Generating 3D lithology probability volumes using poststack inversion, probabilistic neural networks, and Bayesian classification — A case study from the mixed carbonate and siliciclastic deposits of the Cisco Group of the Eastern Shelf of the Permian Basin, north-central Texas

岩性 地质学 硅质碎屑 沉积沉积环境 反演(地质) 碳酸盐 岩石学 地貌学 构造盆地 冶金 材料科学
作者
Sarp Karakaya,Osareni C. Ogiesoba,Cornel Olariu,Shuvajit Bhattacharya
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (2): B131-B146 被引量:5
标识
DOI:10.1190/geo2023-0157.1
摘要

The deposition and mixing of carbonates and siliciclastics in the Cisco Group of the Eastern Shelf of the Permian Basin are complicated by the temporal overlap between icehouse eustatic sea-level oscillations and fluctuations in sediment influx due to the rejuvenation of the Ouachita fold belt. Previous investigators have used well-log correlation as the primary tool in their interpretations of the area’s reciprocal depositional model, but well-log correlation alone cannot explain the full range of spatial lithology variations in the system. To better understand the lithology variation in the area, we use an integrated technique that combines wireline log information from 17 wells with 625 km 2 3D seismic data through poststack seismic inversion, probabilistic neural networks (PNNs), and Bayesian classification. We use deterministic matrix inversion to derive lithology classes from well logs. Crossplot analyses reveal that the acoustic impedance and neutron porosity log pair can be used to differentiate lithologies. We perform model-based poststack inversion to generate a P-impedance volume and use PNNs to generate a neutron porosity volume. We combine these volumes through supervised Bayesian classification to generate lithology probability volumes for each lithology and a most probable lithology volume throughout the seismic data. The lithology volumes highlight the dominant lithologies (carbonate, shale, sand, and mixed) that allowed the interpretation of major carbonate platforms, sand-to-shale ratio variations, carbonate buildups between wells, and channel fill lithologies. Our semiautomated lithology detection workflow applies to regional studies and is also valid for reservoir-scale studies to determine variations in lithologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
key完成签到 ,获得积分10
3秒前
ccc完成签到 ,获得积分10
4秒前
zxy完成签到,获得积分10
4秒前
ycxlb发布了新的文献求助10
4秒前
无敌小天天完成签到 ,获得积分10
5秒前
Flori完成签到 ,获得积分10
6秒前
FashionBoy应助prim采纳,获得10
6秒前
6秒前
Hermit发布了新的文献求助10
9秒前
ycxlb完成签到,获得积分10
9秒前
10秒前
米玉米完成签到,获得积分10
10秒前
帅气鹭洋完成签到,获得积分20
11秒前
77发布了新的文献求助10
13秒前
15秒前
17秒前
77完成签到,获得积分10
18秒前
23秒前
淡然的冰薇完成签到,获得积分10
25秒前
冰魂应助水三寿采纳,获得20
27秒前
wowser发布了新的文献求助10
27秒前
conny完成签到,获得积分10
28秒前
默默地读文献应助JIA采纳,获得20
31秒前
赘婿应助淡然的冰薇采纳,获得10
33秒前
wowser完成签到,获得积分10
35秒前
领导范儿应助科研通管家采纳,获得10
36秒前
在水一方应助科研通管家采纳,获得10
36秒前
雨夜星空应助科研通管家采纳,获得10
36秒前
情怀应助科研通管家采纳,获得10
36秒前
Jasper应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Pothos应助科研通管家采纳,获得10
36秒前
36秒前
慕青应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
37秒前
小蘑菇应助科研通管家采纳,获得10
37秒前
Owen应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921