DAIR-V2XReid: A New Real-World Vehicle-Infrastructure Cooperative Re-ID Dataset and Cross-Shot Feature Aggregation Network Perception Method

感知 计算机科学 特征(语言学) 弹丸 单发 智能交通系统 人工智能 运输工程 工程类 心理学 物理 神经科学 材料科学 语言学 哲学 光学 冶金
作者
Hai Wang,Yaqing Niu,Long Chen,Yicheng Li,Miguel Ángel Sotelo,Zhixiong Li,Yingfeng Cai
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9058-9068 被引量:3
标识
DOI:10.1109/tits.2024.3367723
摘要

As an emerging research field, vehicle re-identification (Re-ID) can realize identity search between the vehicles, which plays an important role in the over-the-horizon perception of Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD). At present, due to the lack of data sets, the relevant research on Vehicle-Infrastructure Cooperative (VIC) Re-ID can only be evaluated in the cross-view monitoring test set which leads to the lack of persuasion of the research. Therefore, based on the DAID-V2X dataset of Tsinghua University, this paper constructs a VIC Re-ID dataset "DAIR-V2XReid" from real vehicle scenarios through vehicle-road end target tag association, thereby making it better applicable to the research of VIC Re-ID. Owing to different task scenarios, existing algorithms trained on monitoring test sets are unable to effectively complete the Re-ID task in this new dataset. Therefore, Cross-shot Feature Aggregation Network (CFA-Net) is also proposed in this paper, to tackle the case where a vehicle becomes unrecognizable due to a large change in its visual appearance across different cameras. Firstly, we put forward a camera embedding module and add it to the Backbone, to group different cameras and solve the problem of cross-shot perspective mutation. Secondly, in order to address the situation where background and vehicle division are not distinguishable, we propose a cross-stage feature fusion module, which integrates low-order semantics with high-order semantics. Finally, we use multi-directional attention network to achieve the final feature extraction. The experimental results show that our proposed CFA-Net method achieves new state-of-the-art in DAIR-V2XReid, with mAP of 58.47%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1秒前
安南应助能干凝冬采纳,获得10
1秒前
1秒前
zzzz发布了新的文献求助10
1秒前
3秒前
燊yy发布了新的文献求助10
4秒前
5秒前
NEU_BBA完成签到,获得积分10
7秒前
杪杪发布了新的文献求助10
7秒前
rtchou发布了新的文献求助200
7秒前
7秒前
9秒前
STEAM发布了新的文献求助10
9秒前
9秒前
Lucas应助zzzz采纳,获得10
10秒前
wanci应助x123采纳,获得10
11秒前
dwaekki发布了新的文献求助30
13秒前
语亦菲扬921完成签到,获得积分10
13秒前
LlieG发布了新的文献求助150
13秒前
14秒前
111发布了新的文献求助20
16秒前
慈祥的乐菱完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助150
19秒前
Ann关注了科研通微信公众号
19秒前
WSR发布了新的文献求助10
20秒前
浮游应助杪杪采纳,获得10
21秒前
22秒前
斯文败类应助shk采纳,获得10
22秒前
等待的道消完成签到 ,获得积分10
22秒前
22秒前
顾矜应助lagom采纳,获得10
23秒前
24秒前
旺旺哥哥发布了新的文献求助10
25秒前
yangminghan完成签到,获得积分10
25秒前
伶俐乌完成签到 ,获得积分10
25秒前
LlieG完成签到,获得积分10
25秒前
doctorlee发布了新的文献求助10
27秒前
28秒前
天天快乐应助张昌辉采纳,获得10
29秒前
Da完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924698
求助须知:如何正确求助?哪些是违规求助? 4194850
关于积分的说明 13029597
捐赠科研通 3966579
什么是DOI,文献DOI怎么找? 2174058
邀请新用户注册赠送积分活动 1191544
关于科研通互助平台的介绍 1101060