Automatic Contrast Generation from Contrastless Computed Tomography

公制(单位) 人工智能 计算机科学 计算机断层摄影术 对比度(视觉) 计算机辅助设计 模式识别(心理学) 相似性(几何) 医学 核医学 放射科 图像(数学) 运营管理 工程类 经济 工程制图
作者
R. R. Domingues,Fábio Sousa‐Nunes,Jennifer Mâncio,Ricardo Fontes‐Carvalho,Miguel Coimbra,João Pedrosa,Francesco Renna
标识
DOI:10.1109/embc40787.2023.10340695
摘要

The use of contrast-enhanced computed tomography (CTCA) for detection of coronary artery disease (CAD) exposes patients to the risks of iodine contrast-agents and excessive radiation, increases scanning time and healthcare costs. Deep learning generative models have the potential to artificially create a pseudo-enhanced image from non-contrast computed tomography (CT) scans.In this work, two specific models of generative adversarial networks (GANs) - the Pix2Pix-GAN and the Cycle-GAN – were tested with paired non-contrasted CT and CTCA scans from a private and public dataset. Furthermore, an exploratory analysis of the trade-off of using 2D and 3D inputs and architectures was performed. Using only the Structural Similarity Index Measure (SSIM) and the Peak Signal-to-Noise Ratio (PSNR), it could be concluded that the Pix2Pix-GAN using 2D data reached better results with 0.492 SSIM and 16.375 dB PSNR. However, visual analysis of the output shows significant blur in the generated images, which is not the case for the Cycle-GAN models. This behavior can be captured by the evaluation of the Fréchet Inception Distance (FID), that represents a fundamental performance metric that is usually not considered by related works in the literature.Clinical relevance— Contrast-enhanced computed tomography is the first line imaging modality to detect CAD resulting in unnecessary exposition to the risk of iodine contrast and radiation in particularly in young patients with no disease. This algorithm has the potential of being translated into clinical practice as a screening method for CAD in asymptomatic subjects or quick rule-out method of CAD in the acute setting or centres with no CTCA service. This strategy can eventually represent a reduction in the need for CTCA reducing its burden and associated costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银河打工人应助科研小董采纳,获得10
1秒前
waoller1发布了新的文献求助10
1秒前
一种信仰完成签到 ,获得积分10
1秒前
AaronDP发布了新的文献求助50
2秒前
隐形曼青应助荣匪采纳,获得10
2秒前
2秒前
流流124141发布了新的文献求助10
7秒前
科研达人发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
渭水飞熊完成签到,获得积分10
11秒前
zho发布了新的文献求助10
12秒前
13秒前
勇哥发布了新的文献求助10
14秒前
14秒前
16秒前
欣家的狗子完成签到,获得积分10
18秒前
华仔应助哈哈采纳,获得10
19秒前
adgcxvjj发布了新的文献求助10
21秒前
荣匪发布了新的文献求助10
22秒前
25秒前
25秒前
思源应助兴奋柜子采纳,获得10
26秒前
sunshine发布了新的文献求助10
30秒前
KGYM完成签到,获得积分10
33秒前
浅晨完成签到,获得积分10
34秒前
科研通AI5应助小小采纳,获得30
35秒前
科研达人发布了新的文献求助10
35秒前
菜虚鲲发布了新的文献求助10
37秒前
37秒前
zho发布了新的文献求助10
38秒前
酷酷海豚完成签到,获得积分10
38秒前
40秒前
授业解惑的哑铃完成签到,获得积分10
40秒前
43秒前
46秒前
吾儿坤发布了新的文献求助10
47秒前
47秒前
兴奋柜子发布了新的文献求助10
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783893
求助须知:如何正确求助?哪些是违规求助? 3329115
关于积分的说明 10240041
捐赠科研通 3044532
什么是DOI,文献DOI怎么找? 1671089
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192