Elucidating Morphology‐Mobility Relationships of Organic Thin Films Through Transfer Learning‐Assisted Multiscale Simulation

材料科学 形态学(生物学) 学习迁移 纳米技术 薄膜 化学工程 人工智能 计算机科学 遗传学 工程类 生物
作者
Tianhao Tan,Lian Duan,Dong Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (22) 被引量:1
标识
DOI:10.1002/adfm.202313085
摘要

Abstract Understanding the relationship between morphology and charge transport capability in organic thin films is vital for advancements in organic electronics. However, accurately predicting charge mobility in these films is challenging due to the extensive evaluations of transfer integral required. To address this challenge, transfer learning techniques are employed to develop machine learning models capable of efficiently and accurately calculating transfer integrals in organic thin films with grain boundaries and polymorphs. Through machine learning‐assisted multiscale simulations of charge transport, the impact of solution shearing conditions is investigated on the morphology and mobility of organic thin films. The findings reveal that shearing‐induced molecular orientation and pre‐aggregation have a significant influence on film morphology, and a moderate shearing speed combined with a suitable solvent promotes the formation of extended transport networks, leading to higher mobility. The utilization of transfer learning‐accelerated simulation techniques opens up new possibilities for exploring the relationship between solution‐processing conditions, morphology, and charge transport properties of organic thin films. This research provides valuable insights that can be applied to optimize solution‐processing techniques in organic electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ha发布了新的文献求助10
刚刚
1秒前
要长高了发布了新的文献求助10
2秒前
3秒前
danna应助仙姝采纳,获得10
3秒前
PJ完成签到,获得积分20
3秒前
11发布了新的文献求助10
4秒前
ihuu完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
轻舟完成签到 ,获得积分10
4秒前
SYLH应助整齐红酒采纳,获得10
4秒前
ln完成签到 ,获得积分10
5秒前
5秒前
why完成签到,获得积分10
5秒前
FashionBoy应助Quirkygbl采纳,获得10
5秒前
遥感小虫发布了新的文献求助10
6秒前
一一应助Tom47采纳,获得10
6秒前
科研通AI5应助陌路孤星采纳,获得10
7秒前
7秒前
7秒前
光亮远航完成签到 ,获得积分10
8秒前
Miyazonox完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
冬瓜熊发布了新的文献求助10
10秒前
霸气的念云完成签到,获得积分10
10秒前
yun尘世发布了新的文献求助10
10秒前
李健应助ha采纳,获得10
10秒前
11秒前
dogontree发布了新的文献求助10
11秒前
wsx完成签到,获得积分10
11秒前
11秒前
兔兔完成签到,获得积分10
11秒前
one发布了新的文献求助10
12秒前
向上完成签到,获得积分10
12秒前
上官若男应助An22采纳,获得10
12秒前
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Handbook on the Toxicology of Metals 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839094
求助须知:如何正确求助?哪些是违规求助? 3381478
关于积分的说明 10518394
捐赠科研通 3100886
什么是DOI,文献DOI怎么找? 1707833
邀请新用户注册赠送积分活动 821944
科研通“疑难数据库(出版商)”最低求助积分说明 773056