Regulating the resistivity of rare-earth nickelates electronic phase transition perovskites via NiO composition

材料科学 非阻塞I/O 电阻率和电导率 电阻式触摸屏 合成 相变 金属-绝缘体过渡 相(物质) 凝聚态物理 纳米技术 工程物理 金属 冶金 电气工程 计算机科学 化学 物理 生物化学 有机化学 人工智能 图像(数学) 工程类 催化作用
作者
Ziang Li,Xiaoyu Li,Hao Zhang,Ting Zhang,Yuchen Cui,Xiaoguang Xu,Yong Jiang,Nuofu Chen,Jikun Chen
出处
期刊:Ceramics International [Elsevier]
卷期号:50 (6): 9548-9555 被引量:5
标识
DOI:10.1016/j.ceramint.2023.12.273
摘要

Although rare-earth nickelates (ReNiO3) exhibit widely adjustable metal-to-insulator transition (MIT) properties, it is yet difficult to control their material resistivities to cater for potential applications in correlated electronics. Herein, we demonstrate a strategy to regulate the material resistivities of ReNiO3 while maintaining their relative abrupt MIT properties by compositing with the NiO nanoparticles and afterward high oxygen pressure sintering. Introducing the more insulating NiO as a secondary phase within ReNiO3 (e.g., NdNiO3 and SmNiO3) elevates their material resistivities across two orders of magnitudes while maintaining a similar critical temperature (TMIT) and its resultant resistive change at a moderate compositing ratio (e.g., <80 %). The nearest-neighbors-hopping (NNH) model and linear model were used to fit the low-temperature electric transportation properties for both the insulating and metallic phases of ReNiO3, and it indicates that the pristine carrier transportation modes can be well preserved despite a high compositing ratio of NiO up to 80 %. Similar effects cannot be achieved by using other more insulating compositing oxides, such as BaBiO3, LaAlO3, and NiFe2O4, as the abruption in resistive change across TMIT was not preserved at a similar high compositing ratio (e.g., >20 %), while their carrier transportation modes varied at much smaller composition ratio. It is worth noticing that the compositing with NiO also improves the mechanical strength of ReNiO3, and this benefits their practical applications in electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱完成签到,获得积分10
刚刚
袁小豪完成签到,获得积分20
1秒前
SciGPT应助曾经二娘采纳,获得10
1秒前
1秒前
轻松凡英完成签到,获得积分10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
顾矜应助wzc采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
RATHER发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
LIN发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
Stella应助科研通管家采纳,获得30
2秒前
YUZ完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得80
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
右右发布了新的文献求助10
2秒前
天天快乐应助科研通管家采纳,获得30
2秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
面包小狗发布了新的文献求助10
3秒前
summer完成签到,获得积分10
3秒前
凸凸应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
拉长的凌旋完成签到,获得积分10
3秒前
小雨哥完成签到,获得积分10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
XiaoBai完成签到,获得积分10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402598
求助须知:如何正确求助?哪些是违规求助? 4521214
关于积分的说明 14084549
捐赠科研通 4435204
什么是DOI,文献DOI怎么找? 2434608
邀请新用户注册赠送积分活动 1426723
关于科研通互助平台的介绍 1405516