点云
计算机科学
降噪
杠杆(统计)
平滑的
噪音(视频)
路径(计算)
人工智能
布线(电子设计自动化)
计算机视觉
算法
计算机网络
图像(数学)
作者
Zeyong Wei,Honghua Chen,Liangliang Nan,Jun Wang,Jing Qin,Mingqiang Wei
标识
DOI:10.1109/tpami.2024.3355988
摘要
Current point cloud denoising (PCD) models optimize single networks, trying to make their parameters adaptive to each point in a large pool of point clouds. Such a denoising network paradigm neglects that different points are often corrupted by different levels of noise and they may convey different geometric structures. Thus, the intricacy of both noise and geometry poses side effects including remnant noise, wrongly-smoothed edges, and distorted shape after denoising. We propose PathNet , a path-selective PCD paradigm based on reinforcement learning (RL). Unlike existing efforts, PathNet enables dynamic selection of the most appropriate denoising path for each point, best moving it onto its underlying surface. We have two more contributions besides the proposed framework of path-selective PCD for the first time . First, to leverage geometry expertise and benefit from training data, we propose a noise- and geometry-aware reward function to train the routing agent in RL. Second, the routing agent and the denoising network are trained jointly to avoid under- and over-smoothing. Extensive experiments show promising improvements of PathNet over its competitors, in terms of the effectiveness for removing different levels of noise and preserving multi-scale surface geometries. Furthermore, PathNet generalizes itself more smoothly to real scans than cutting-edge models. The source code is publicly available at: https://github.com/ZeyongWei/PathNet.git .
科研通智能强力驱动
Strongly Powered by AbleSci AI