Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (3): 1949-1962 被引量:39
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bonfire发布了新的文献求助10
刚刚
Wangboyang发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
记忆发布了新的文献求助10
2秒前
2568269431发布了新的文献求助10
2秒前
2秒前
思源应助Cssss采纳,获得10
2秒前
JamesPei应助Cssss采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
Zx_1993应助Cssss采纳,获得20
2秒前
李爱国应助Cssss采纳,获得10
2秒前
晨纯发布了新的文献求助10
2秒前
Lucas应助贾不可采纳,获得10
3秒前
静静完成签到,获得积分20
3秒前
3秒前
xxx发布了新的文献求助10
3秒前
ning完成签到,获得积分10
4秒前
4秒前
充电宝应助悠悠采纳,获得10
4秒前
5秒前
Orange应助cmccs采纳,获得200
5秒前
6秒前
赵女士发布了新的文献求助10
6秒前
个性妙之完成签到,获得积分10
6秒前
cyndi发布了新的文献求助10
7秒前
1531811发布了新的文献求助10
7秒前
FashionBoy应助vic303采纳,获得10
7秒前
7秒前
未来EBM发布了新的文献求助10
8秒前
pka发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
You发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111405
求助须知:如何正确求助?哪些是违规求助? 4319643
关于积分的说明 13458882
捐赠科研通 4150251
什么是DOI,文献DOI怎么找? 2274053
邀请新用户注册赠送积分活动 1276096
关于科研通互助平台的介绍 1214317