Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model

医学 签名(拓扑) 神经组阅片室 无线电技术 淋巴结转移 临床实习 腺癌 转移 介入放射学 放射科 淋巴结 病理 人工智能 内科学 计算机科学 癌症 神经学 家庭医学 精神科 数学 几何学
作者
Xiaoling Ma,Liming Xia,Jun Chen,Weijia Wan,Wen Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:33 (3): 1949-1962 被引量:32
标识
DOI:10.1007/s00330-022-09153-z
摘要

To develop and validate a deep learning (DL) signature for predicting lymph node (LN) metastasis in patients with lung adenocarcinoma.A total of 612 patients with pathologically-confirmed lung adenocarcinoma were retrospectively enrolled and were randomly divided into training cohort (n = 489) and internal validation cohort (n = 123). Besides, 108 patients were enrolled and constituted an independent test cohort (n = 108). Patients' clinical characteristics and CT semantic features were collected. The radiomics features were derived from contrast-enhanced CT images. The clinical-semantic model and radiomics signature were built to predict LN metastasis. Furthermore, Swin Transformer was adopted to develop a DL signature predictive of LN metastasis. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The comparisons of AUC were conducted by the DeLong test.The proposed DL signature yielded an AUC of 0.948-0.961 across all three cohorts, significantly superior to both clinical-semantic model and radiomics signature (all p < 0.05). The calibration curves show that DL signature predicted probabilities fit well the actual observed probabilities of LN metastasis. DL signature gained a higher net benefit than both clinical-semantic model and radiomics signature. The incorporation of radiomics signature or clinical-semantic risk predictors failed to reveal an incremental value over the DL signature.The proposed DL signature based on Swin Transformer achieved a promising performance in predicting LN metastasis and could confer important information in noninvasive mediastinal LN staging and individualized therapeutic options.• Accurate prediction for lymph node metastasis is crucial to formulate individualized therapeutic options for patients with lung adenocarcinoma. • The deep learning signature yielded an AUC of 0.948-0.961 across all three cohorts in predicting lymph node metastasis, superior to both radiomics signature and clinical-semantic model. • The incorporation of radiomics signature or clinical-semantic risk predictors into deep learning signature failed to reveal an incremental value over deep learning signature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聂浩完成签到,获得积分10
刚刚
卢西奥发布了新的文献求助10
刚刚
兴奋海雪发布了新的文献求助10
1秒前
wipmzxu完成签到,获得积分10
3秒前
yuhanz完成签到 ,获得积分10
4秒前
专注的小松鼠完成签到,获得积分10
5秒前
6秒前
宁静致远完成签到,获得积分10
6秒前
7秒前
pluto应助爱撒娇的衫采纳,获得10
8秒前
小叙完成签到 ,获得积分10
9秒前
含糊完成签到 ,获得积分10
9秒前
好嘟完成签到,获得积分20
12秒前
斯文败类应助snowball采纳,获得10
12秒前
jyyg发布了新的文献求助10
13秒前
13秒前
happily遇发布了新的文献求助30
14秒前
hahaha应助兴奋海雪采纳,获得10
14秒前
Lilith完成签到,获得积分10
15秒前
优美的谷完成签到,获得积分10
16秒前
tzy完成签到,获得积分10
16秒前
紫色翡翠完成签到,获得积分10
16秒前
17秒前
莹yy完成签到 ,获得积分10
17秒前
卢西奥完成签到,获得积分10
18秒前
跋扈完成签到,获得积分10
18秒前
顺心曼香完成签到,获得积分10
18秒前
希望天下0贩的0应助abc97采纳,获得10
19秒前
元欣完成签到 ,获得积分10
20秒前
吉涛发布了新的文献求助10
21秒前
Jasper应助Sindy采纳,获得10
22秒前
23秒前
开心市民完成签到,获得积分10
24秒前
24秒前
24秒前
pluto应助indigo采纳,获得10
25秒前
26秒前
JamesPei应助keyan采纳,获得10
27秒前
无奈半蕾发布了新的文献求助10
28秒前
开心市民发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050