偏爱
计算机科学
鉴定(生物学)
人机交互
驾驶模拟器
背景(考古学)
自动化
模式
人工智能
模拟
工程类
社会学
社会科学
微观经济学
经济
古生物学
生物
机械工程
植物
作者
Zhaobo Zheng,Kumar Akash,Teruhisa Misu,Vidya Krishnamoorthy,Miaomiao Dong,Yuni Lee,Gaojian Huang
标识
DOI:10.1145/3536221.3556637
摘要
A key factor to optimal acceptance and comfort of automated vehicle features is the driving style. Mismatches between the automated and the driver preferred driving styles can make users take over more frequently or even disable the automation features. This work proposes identification of user driving style preference with multimodal signals, so the vehicle could match user preference in a continuous and automatic way. We conducted a driving simulator study with 36 participants and collected extensive multimodal data including behavioral, physiological, and situational data. This includes eye gaze, steering grip force, driving maneuvers, brake and throttle pedal inputs as well as foot distance from pedals, pupil diameter, galvanic skin response, heart rate, and situational drive context. Then, we built machine learning models to identify preferred driving styles, and confirmed that all modalities are important for the identification of user preference. This work paves the road for implicit adaptive driving styles on automated vehicles.
科研通智能强力驱动
Strongly Powered by AbleSci AI