SeMask-Mask2Former: A Semantic Segmentation Model for High Resolution Remote Sensing Images

计算机科学 分割 人工智能 卷积神经网络 变压器 像素 遥感 解析 高分辨率 图像分辨率 模式识别(心理学) 计算机视觉 地理 量子力学 物理 电压
作者
Yicheng Qiao,Wei Liu,Bin Liang,Pengyun Wang,Haopeng Zhang,Junli Yang
出处
期刊:IEEE Aerospace Conference 卷期号:: 1-6 被引量:2
标识
DOI:10.1109/aero55745.2023.10115761
摘要

With the development of remote sensing, semantic segmentation of high-resolution remote sensing images (RSIs) is increasingly essential. At the same time, the characteristics of objects in RSIs, such as large size, variation in object scales, and complex details, make it necessary to capture both long-range context and local information. There are some methods such as Fully Convolutional Networks (FCN) and Pyramid Scene Parsing Network (PSPNet) lack the ability to capture long-range dependencies, due to the limited receptive field of Convolutional Neural Network (CNN). However, the self-attention mechanism to capture the correlation between pixels in Transformer models has remarkable capability in capturing long-range context. One of the most outstanding Transformer models is the Masked-attention Mask Transformer (Mask2Former) which adopts the mask classification method. We propose a model SeMask-Mask2Former with boundary loss. Semantically Masked (Se-Mask) is the model's backbone and Mask2Former is the decoder. Concretely, the mask classification that generates one or even more masks for specific categories to perform the elaborate segmentation is especially suitable for handling the characteristic of large within-class and small inter-class variance of RSIs. Above all, extensive experimental results show that SeMask-Mask2Former obtains better results in semantic segmentation of high-resolution RSIs on the ISPRS Potsdam dataset compared to CNN-based methods and other state-of-the-art transformer-based methods. Extensive ablation studies conducted on the Potsdam dataset verifies the contribution of each component or optimization strategy in SeMask-Mask2Former.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mars完成签到,获得积分10
2秒前
pan完成签到 ,获得积分10
2秒前
满天星辰独览完成签到 ,获得积分10
4秒前
摆哥完成签到,获得积分10
4秒前
Lucas应助迷城采纳,获得10
5秒前
帅气的沧海完成签到 ,获得积分10
5秒前
ding应助读书的时候采纳,获得10
6秒前
6秒前
细心笑卉完成签到 ,获得积分10
7秒前
zxt完成签到,获得积分10
7秒前
orixero应助Pluto0o采纳,获得10
7秒前
wang完成签到 ,获得积分10
8秒前
宁静致远完成签到,获得积分10
8秒前
EW完成签到,获得积分10
8秒前
景行行止完成签到,获得积分10
9秒前
10秒前
Yibin0719发布了新的文献求助10
10秒前
gi发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
等待的代容完成签到,获得积分10
13秒前
Ava应助流川枫采纳,获得10
14秒前
淡然冬灵完成签到,获得积分10
16秒前
打发打发的发到付电费完成签到,获得积分10
17秒前
liu完成签到 ,获得积分10
18秒前
希望天下0贩的0应助Wang采纳,获得10
20秒前
lllllllll完成签到,获得积分10
22秒前
啦啦啦~发布了新的文献求助10
22秒前
23秒前
小蘑菇应助读书的时候采纳,获得10
24秒前
Yibin0719完成签到,获得积分20
25秒前
Alanni完成签到 ,获得积分10
25秒前
25秒前
专注的胡萝卜完成签到 ,获得积分10
26秒前
28秒前
单薄月饼完成签到,获得积分10
29秒前
斯奈克完成签到,获得积分10
29秒前
流川枫发布了新的文献求助10
30秒前
梨懵懵应助114555采纳,获得10
33秒前
一只橙子完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030328
求助须知:如何正确求助?哪些是违规求助? 3569080
关于积分的说明 11356637
捐赠科研通 3299689
什么是DOI,文献DOI怎么找? 1816822
邀请新用户注册赠送积分活动 890936
科研通“疑难数据库(出版商)”最低求助积分说明 813978