Gender‐specific data‐driven adiposity subtypes using deep‐learning‐based abdominal CT segmentation

医学 优势比 腹内脂肪 2型糖尿病 糖尿病 内科学 腹部脂肪 脂肪组织 内分泌学 内脏脂肪 肥胖 胰岛素抵抗
作者
Xiantong Zou,Xianghai Zhou,Yufeng Li,Qi Huang,Yuan Ni,Ruiming Zhang,Fang Zhang,Xin Wen,Jiayu Cheng,Yanping Yuan,Yue Yu,Chengcheng Guo,Guotong Xie,Linong Ji
出处
期刊:Obesity [Wiley]
卷期号:31 (6): 1600-1609 被引量:1
标识
DOI:10.1002/oby.23741
摘要

Abstract Objective The aim of this study was to quantify abdominal adiposity and generate data‐driven adiposity subtypes with different diabetes risks. Methods A total of 3817 participants from the Pinggu Metabolic Disease Study were recruited. A deep‐learning‐based recognition model on abdominal computed tomography (CT) images (A‐CT model) was developed and validated in 100 randomly selected cases. The volumes and proportions of subcutaneous fat, visceral fat, liver fat, and muscle fat were automatically recognized in all cases. K‐means clustering was used to identify subgroups using the proportions of the four fat components. Results The Dice indices among the measurements assessed by the A‐CT model and manual evaluation to detect liver fat, muscle fat, and subcutaneous fat areas were 0.96, 0.95, and 0.92, respectively. Three subtypes were generated separately in men and women: visceral fat dominant type (VFD); subcutaneous fat dominant type (SFD); and intermuscular fat dominant type (MFD). Compared with the SFD group, the MFD group had similar diabetes risk, and the VFD group had a 60% higher diabetes risk when age and BMI were adjusted for in men. The adjusted odds ratio for diabetes was 1.92 (95% CI: 1.32‐2.78) in the MFD group and 6.14 (95% CI: 4.18‐9.03) in the VFD group in women. Conclusions This study identified gender‐specific abdominal adiposity subgroups, which may help clinicians to distinguish diabetes risk quickly and automatically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献荒完成签到,获得积分10
1秒前
宇文千万完成签到,获得积分10
2秒前
guangshuang发布了新的文献求助10
3秒前
车灵波完成签到 ,获得积分10
3秒前
zeno123456完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
水水水水完成签到 ,获得积分10
8秒前
Rain完成签到,获得积分10
8秒前
可爱的函函应助guangshuang采纳,获得10
10秒前
Hana发布了新的文献求助10
12秒前
wujuan1606完成签到 ,获得积分10
12秒前
13秒前
乐观的涵菱完成签到,获得积分10
15秒前
YSY发布了新的文献求助10
17秒前
黑苹果完成签到,获得积分10
17秒前
小羊先生完成签到 ,获得积分10
17秒前
阿伦完成签到,获得积分10
18秒前
落寞丹萱发布了新的文献求助10
18秒前
19秒前
完美世界应助若邻采纳,获得30
20秒前
黑包包大人完成签到,获得积分10
20秒前
至幸发布了新的文献求助10
20秒前
Owen应助多科特张采纳,获得30
23秒前
Cold-Drink-Shop完成签到,获得积分10
23秒前
慕青应助YSY采纳,获得10
25秒前
所所应助落寞丹萱采纳,获得10
25秒前
zwy109完成签到 ,获得积分10
28秒前
29秒前
31秒前
科研学术完成签到,获得积分10
32秒前
橙子完成签到 ,获得积分10
32秒前
32秒前
JankinWen发布了新的文献求助10
34秒前
35秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
领导范儿应助科研通管家采纳,获得10
37秒前
Raymond应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780984
求助须知:如何正确求助?哪些是违规求助? 3326419
关于积分的说明 10227236
捐赠科研通 3041655
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734