清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Inspection of wind turbine blades using image deblurring and deep learning segmentation

去模糊 计算机科学 运动模糊 人工智能 计算机视觉 分割 深度学习 涡轮机 图像分割 图像处理 图像复原 图像(数学) 工程类 航空航天工程
作者
Jiale Lu,Qingbin Gao,Kai Zhou
标识
DOI:10.1117/12.3009721
摘要

Remote and complex work sites of wind turbines limit the accessibility of the condition assessment. Wind turbine blades are subject to sustained wind load and harsh natural environmental conditions, which are vulnerable to various faults. Robotic-enabled sensing technology appears to be a promising solution for an efficient wind turbine blade inspection. Together with the recent advances in image processing and deep learning segmentation, automated inspection of wind turbine blades becomes possible. Nevertheless, it remains a challenging task to quantify the damage accurately due to the complex condition of images concerning motion blurs. To address this issue, an integrated framework, i.e., the combination of a Deblur Generative Adversarial Network v2 (DeblurGAN-v2) and You Only Look Once v8 (YOLO-v8) was proposed in this study. Specifically, the mapping between the motion-blurred images and those in high quality was adopted from the open-access pretrained DeblurGAN-v2, based on which the deblurring performance for wind turbine images with various motion blur scales was discussed concerning the image quality. Subsequently, the transfer learning method was implemented to fine-tune YOLO-v8. The well-trained YOLO v8 was then utilized for target defect segmentation on the deblurred images. Finally, various metrics were calculated to evaluate the segmentation accuracy and efficiency. Results prove a good generalization of DeblurGAN-v2 on wind turbine images and clearly illustrate the enhanced performance of the proposed methodology especially when the motion blur scale is within 35. The integrated framework could serve as a reference for dealing with other fuzzy image-related issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maclogos完成签到,获得积分10
4秒前
7秒前
9秒前
lynn完成签到 ,获得积分10
11秒前
mf2002mf完成签到 ,获得积分10
11秒前
科研通AI2S应助bai采纳,获得10
11秒前
海阔天空完成签到,获得积分0
11秒前
20秒前
聪慧芷巧发布了新的文献求助10
24秒前
cugwzr完成签到,获得积分10
25秒前
Young完成签到 ,获得积分10
28秒前
科研通AI2S应助bai采纳,获得10
31秒前
平凡世界完成签到 ,获得积分10
35秒前
Lucas应助miaolingcool采纳,获得10
44秒前
dominic12361完成签到 ,获得积分10
44秒前
少女徐必成完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
miaolingcool发布了新的文献求助10
1分钟前
1分钟前
醉熏的千柳完成签到 ,获得积分10
1分钟前
zx完成签到 ,获得积分10
1分钟前
miaolingcool完成签到,获得积分10
1分钟前
xz完成签到 ,获得积分10
1分钟前
栗子完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
栗子完成签到 ,获得积分10
1分钟前
科研通AI2S应助bai采纳,获得10
1分钟前
TOJNRU完成签到,获得积分10
1分钟前
风中琦完成签到 ,获得积分10
1分钟前
汉堡包应助TOJNRU采纳,获得10
1分钟前
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
plant完成签到 ,获得积分10
1分钟前
hyxu678完成签到,获得积分10
2分钟前
嘟嘟52edm完成签到 ,获得积分10
2分钟前
qqaeao完成签到,获得积分10
2分钟前
赵勇完成签到 ,获得积分10
2分钟前
航行天下完成签到 ,获得积分10
2分钟前
孤独剑完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10300956
捐赠科研通 3057185
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626