Optimization of offshore wind farm inspection paths based on K-means-GA

海上风力发电 聚类分析 遗传算法 盈利能力指数 计算机科学 地铁列车时刻表 风力发电 稳健性(进化) 旅行商问题 数学优化 运筹学 算法 工程类 人工智能 数学 机器学习 业务 生物化学 基因 操作系统 电气工程 财务 化学
作者
Zhongbo Peng,Shijie Sun,Liang Tong,Qiang Fan,Lumeng Wang,Dan Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (5): e0303533-e0303533
标识
DOI:10.1371/journal.pone.0303533
摘要

As global demand for offshore wind energy continues to rise, the imperative to enhance the profitability of wind power projects and reduce their operational costs becomes increasingly urgent. This study proposes an innovative approach to optimize the inspection routes of offshore wind farms, which integrates the K-means clustering algorithm and genetic algorithm (GA). In this paper, the inspection route planning problem is formulated as a multiple traveling salesman problem (mTSP), and the advantages of the K-means clustering algorithm in distance similarity are utilized to effectively group the positions of wind turbines, thereby optimizing the inspection schedule for vessels. Subsequently, by harnessing the powerful optimization capability and robustness of genetic algorithms, further refinement is conducted to search for the optimal inspection routes, aiming to achieve cost reduction objectives. The results of simulation experiments demonstrate the effectiveness of this integrated approach. Compared to traditional genetic algorithms, the inspection route length has been significantly reduced, from 93 kilometers to 79.36 kilometers. Simultaneously, operational costs have also experienced a notable decrease, dropping from 141,500 Chinese Yuan to 125,600 Chinese Yuan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Atlantic完成签到,获得积分10
1秒前
Yang应助读书的时候采纳,获得10
1秒前
1秒前
微笑绿旋应助TieNiuxxx采纳,获得30
1秒前
嘒彼星发布了新的文献求助10
2秒前
甜心糖发布了新的文献求助10
4秒前
4秒前
Lucas应助务实凡灵采纳,获得10
6秒前
w51m应助ShelleyZhang采纳,获得10
7秒前
11秒前
JIU夭发布了新的文献求助10
11秒前
Yang发布了新的文献求助30
11秒前
逆时针应助淡定的镜子采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
0426完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
18秒前
喵叽发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032090
求助须知:如何正确求助?哪些是违规求助? 3570686
关于积分的说明 11362352
捐赠科研通 3301167
什么是DOI,文献DOI怎么找? 1817316
邀请新用户注册赠送积分活动 891492
科研通“疑难数据库(出版商)”最低求助积分说明 814255