Remaining useful life prediction and state of health diagnosis of lithium-ion batteries with multiscale health features based on optimized CatBoost algorithm

健康状况 蚁群优化算法 粒子群优化 计算机科学 均方误差 稳健性(进化) 算法 工程类 机器学习 电池(电) 统计 数学 物理 基因 化学 生物化学 量子力学 功率(物理)
作者
Yifei Zhou,Shunli Wang,Yanxing Xie,Jiawei Zeng,Carlos Fernández
出处
期刊:Energy [Elsevier BV]
卷期号:300: 131575-131575 被引量:12
标识
DOI:10.1016/j.energy.2024.131575
摘要

Due to the large-scale application of electric vehicles, the remaining service life prediction and health status diagnosis of lithium-ion batteries as their power core is particularly important, and the essence of RUL prediction and SOH diagnosis is the prediction of remaining capacity. Through the aging experiment of cycle charging and discharging of lithium-ion batteries, the health features of experimental data are extracted for the prediction of remaining capacity. In this paper, a deep feature extraction method based on Bilinear CNN combined with CatBoost algorithm based on fractional order method optimization particle swarm optimization, and ant colony optimization algorithm is proposed for battery remaining capacity prediction. Seven groups of health features extracted from ten groups of battery data were used to input them into the optimized CatBoost algorithm for regression prediction. The results show that the proposed model achieves accurate SOH and RUL prediction, the three evaluation indicators MAE, RMSE, and MAPE of SOH are all within 1.7% and the error rate of RUL is not higher than 1.5%, and the test of multiple batteries also proves its strong robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助方董采纳,获得10
1秒前
李爱国应助YQQ采纳,获得10
2秒前
良璞完成签到,获得积分10
4秒前
123jopop完成签到,获得积分10
4秒前
summer发布了新的文献求助10
4秒前
要楽奈完成签到,获得积分10
5秒前
6秒前
6秒前
良璞发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
11秒前
12秒前
jimmy发布了新的文献求助10
12秒前
林渤森发布了新的文献求助30
13秒前
sjfczyh发布了新的文献求助10
14秒前
李健应助summer采纳,获得10
15秒前
tough发布了新的文献求助20
16秒前
顾矜应助大米采纳,获得30
17秒前
打打应助糊涂涂采纳,获得10
18秒前
19秒前
情怀应助长度2到采纳,获得10
19秒前
19秒前
wxy完成签到,获得积分10
20秒前
潇潇暮雨完成签到,获得积分10
20秒前
SciGPT应助积极问晴采纳,获得10
22秒前
psykyo完成签到 ,获得积分10
22秒前
慈善家完成签到,获得积分10
22秒前
24秒前
zero发布了新的文献求助10
24秒前
雕堡发布了新的文献求助10
26秒前
28秒前
三三发布了新的文献求助10
29秒前
Dudidu完成签到,获得积分10
32秒前
33秒前
wk_sea完成签到,获得积分10
38秒前
39秒前
elizabeth339发布了新的文献求助50
39秒前
xiaxiao完成签到,获得积分0
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767