Deep learning-based fully automatic screening of carotid artery plaques in computed tomography angiography: A multicenter study

医学 放射科 计算机断层血管造影 颈动脉 计算机断层摄影术 血管造影 多中心研究 病理 内科学 随机对照试验
作者
Dewei Zhai,Rong Liu,Y. Liu,Hongkun Yin,Wen Tang,Jian Yang,K. Liu,Guohua Fan,Shenghong Ju,Wenli Cai
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (8): e994-e1002 被引量:1
标识
DOI:10.1016/j.crad.2024.04.015
摘要

Purpose To develop and validate a deep learning (DL) algorithm for the automated detection and classification of carotid artery plaques (CAPs) on computed tomography angiography (CTA) images. Materials and Methods This retrospective study enrolled 400 patients (300 in center Ⅰ and 100 in Ⅱ). Three radiologists co-labelled CAPs, and their revised calcification status (noncalcified, mixed, calcified) was regarded as ground truth. Center Ⅰ patients were randomly divided into training and internal validation datasets, while Center Ⅱ patients served as the external validation dataset. Carotid artery regions were segmented using a modified 3D-UNet network, followed by CAPs detection and classification using a ResUNet-based architecture in a two-step DL system. The DL model's detection and classification performance were evaluated on the validation dataset using precision-recall curve, free-response receiver operating characteristic (fROC) curve, Cohen's kappa, and ROC curve analysis. Results The DL model had achieved 83.4% sensitivity at 3.0 false-positives (FPs)/CTA scan in internal validation, and 78.9% in external validation. F1-scores were 0.764 and 0.769 at the optimal threshold, and area under fROC curves were 0.756 and 0.738, respectively, indicating good overall accuracy for CAP detection. The DL model also showed good performance for the ternary classification of CAPs, with Cohen's kappa achieved 0.728 and 0.703 in both validation datasets. Conclusion This study demonstrated the feasibility of using a fully automated DL-based algorithm for the detection and ternary classification of CAPs, which could be helpful for the workloads of radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
memedaaaah发布了新的文献求助10
2秒前
cjh发布了新的文献求助10
3秒前
Chency完成签到,获得积分10
3秒前
不配.应助柳青采纳,获得30
3秒前
小二郎应助我爱学习呢采纳,获得10
4秒前
田様应助kate采纳,获得30
4秒前
李爱国应助子建采纳,获得10
6秒前
Scarlett完成签到 ,获得积分10
6秒前
喝酸奶不舔盖完成签到 ,获得积分0
7秒前
nini发布了新的文献求助10
7秒前
tlx发布了新的文献求助10
8秒前
9秒前
Shmily完成签到,获得积分10
9秒前
万能图书馆应助北非采纳,获得10
10秒前
Chency发布了新的文献求助10
12秒前
12秒前
机灵若完成签到,获得积分10
13秒前
vegetable完成签到,获得积分10
13秒前
14秒前
15秒前
uniphoton完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
852应助专一的青槐采纳,获得10
16秒前
普通用户30号完成签到 ,获得积分10
16秒前
子建发布了新的文献求助10
17秒前
W查查发布了新的文献求助10
18秒前
2428发布了新的文献求助10
19秒前
Miss发布了新的文献求助10
19秒前
乖就发布了新的文献求助30
20秒前
顾矜应助岸上牛采纳,获得10
20秒前
22秒前
22秒前
22秒前
英俊的铭应助小xy采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4452257
求助须知:如何正确求助?哪些是违规求助? 3919366
关于积分的说明 12164956
捐赠科研通 3569481
什么是DOI,文献DOI怎么找? 1960186
邀请新用户注册赠送积分活动 999536
科研通“疑难数据库(出版商)”最低求助积分说明 894489