Deep learning-based fully automatic screening of carotid artery plaques in computed tomography angiography: A multicenter study

医学 放射科 计算机断层血管造影 颈动脉 计算机断层摄影术 血管造影 多中心研究 病理 内科学 随机对照试验
作者
D. Zhai,Rong Liu,Y. Liu,Hongkun Yin,Wen Tang,Jian Yang,K. Liu,Guohua Fan,Shenghong Ju,Wenli Cai
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (8): e994-e1002
标识
DOI:10.1016/j.crad.2024.04.015
摘要

Purpose To develop and validate a deep learning (DL) algorithm for the automated detection and classification of carotid artery plaques (CAPs) on computed tomography angiography (CTA) images. Materials and Methods This retrospective study enrolled 400 patients (300 in center Ⅰ and 100 in Ⅱ). Three radiologists co-labelled CAPs, and their revised calcification status (noncalcified, mixed, calcified) was regarded as ground truth. Center Ⅰ patients were randomly divided into training and internal validation datasets, while Center Ⅱ patients served as the external validation dataset. Carotid artery regions were segmented using a modified 3D-UNet network, followed by CAPs detection and classification using a ResUNet-based architecture in a two-step DL system. The DL model's detection and classification performance were evaluated on the validation dataset using precision-recall curve, free-response receiver operating characteristic (fROC) curve, Cohen's kappa, and ROC curve analysis. Results The DL model had achieved 83.4% sensitivity at 3.0 false-positives (FPs)/CTA scan in internal validation, and 78.9% in external validation. F1-scores were 0.764 and 0.769 at the optimal threshold, and area under fROC curves were 0.756 and 0.738, respectively, indicating good overall accuracy for CAP detection. The DL model also showed good performance for the ternary classification of CAPs, with Cohen's kappa achieved 0.728 and 0.703 in both validation datasets. Conclusion This study demonstrated the feasibility of using a fully automated DL-based algorithm for the detection and ternary classification of CAPs, which could be helpful for the workloads of radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰色城市y完成签到,获得积分10
刚刚
liuxiaofeng2943完成签到 ,获得积分10
1秒前
1秒前
乌云乌云快走开完成签到,获得积分10
1秒前
2秒前
DownTAT完成签到,获得积分20
2秒前
chinh完成签到,获得积分10
2秒前
GD完成签到,获得积分10
2秒前
科研通AI5应助小虎采纳,获得10
2秒前
forever完成签到,获得积分10
3秒前
3秒前
科研通AI5应助Sonnet采纳,获得10
3秒前
zz完成签到,获得积分10
3秒前
3秒前
无花果应助想多睡会儿采纳,获得10
4秒前
方圆几里完成签到,获得积分10
4秒前
研友_LkVMe8发布了新的文献求助10
4秒前
一朵海棠花完成签到,获得积分10
4秒前
hyf完成签到,获得积分10
5秒前
空白发布了新的文献求助10
5秒前
四九_完成签到,获得积分10
6秒前
思源应助浮世采纳,获得10
6秒前
萌~Lucky完成签到,获得积分10
6秒前
小蘑菇应助小小果妈采纳,获得10
7秒前
huofuman完成签到,获得积分10
7秒前
木湾完成签到,获得积分10
8秒前
Toread完成签到 ,获得积分10
8秒前
自然水风完成签到,获得积分10
8秒前
guanshujuan发布了新的文献求助10
8秒前
可爱的猪猪完成签到,获得积分10
9秒前
9秒前
hh发布了新的文献求助10
9秒前
年轻的吐司完成签到,获得积分10
9秒前
oldblack完成签到,获得积分10
9秒前
开心向真完成签到,获得积分10
10秒前
空白完成签到,获得积分10
11秒前
11秒前
11秒前
GJT0427gjt完成签到,获得积分10
12秒前
12秒前
高分求助中
新中国出版事业的先驱胡愈之 1500
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Building Quantum Computers 458
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854002
求助须知:如何正确求助?哪些是违规求助? 3396669
关于积分的说明 10598193
捐赠科研通 3118599
什么是DOI,文献DOI怎么找? 1718646
邀请新用户注册赠送积分活动 827718
科研通“疑难数据库(出版商)”最低求助积分说明 776983