Levenberg-Marquardt算法
非线性系统
应用数学
数学
希尔伯特空间
操作员(生物学)
适定问题
数学分析
计算机科学
人工智能
人工神经网络
物理
生物化学
量子力学
转录因子
基因
抑制因子
化学
作者
Pallavi Mahale,Ankush Kumar
标识
DOI:10.1515/jiip-2023-0090
摘要
Abstract In this paper, we consider the simplified Levenberg–Marquardt method for nonlinear ill-posed inverse problems in Hilbert spaces for obtaining stable approximations of solutions to the ill-posed nonlinear equations of the form F ( u ) = y {F(u)=y} , where F : 𝒟 ( F ) ⊂ 𝖴 → 𝖸 {F:\mathcal{D}(F)\subset\mathsf{U}\to\mathsf{Y}} is a nonlinear operator between Hilbert spaces 𝖴 {\mathsf{U}} and 𝖸 {\mathsf{Y}} . The method is defined as follows: u n + 1 δ = u n δ - ( T 0 ∗ T 0 + α n I ) - 1 T 0 ∗ ( F ( u n δ ) - y δ ) , u_{n+1}^{\delta}=u_{n}^{\delta}-(T_{0}^{\ast}T_{0}+\alpha_{n}I)^{-1}T_{0}^{% \ast}(F(u_{n}^{\delta})-y^{\delta}), where T 0 = F ′ ( u 0 ) {T_{0}=F^{\prime}(u_{0})} and T 0 ∗ = F ′ ( u 0 ) ∗ {T_{0}^{\ast}=F^{\prime}(u_{0})^{\ast}} . Here F ′ ( u 0 ) {F^{\prime}(u_{0})} denotes the Frèchet derivative of F at an initial guess u 0 ∈ 𝒟 ( F ) {u_{0}\in\mathcal{D}(F)} for the exact solution u † {u^{\dagger}} , F ′ ( u 0 ) ∗ {F^{\prime}(u_{0})^{\ast}} is the adjoint of F ′ ( u 0 ) {F^{\prime}(u_{0})} and { α n } {\{\alpha_{n}\}} is an a priori chosen sequence of non-negative real numbers satisfying suitable properties. We use Morozov-type stopping rule to terminate the iterations. Under suitable non-linearity conditions on operator F , we show convergence of the method and also obtain a convergence rate result under a Hölder-type source condition on the element u 0 - u † {u_{0}-u^{\dagger}} . Furthermore, we derive convergence of the method for the case when no source conditions are used and the study concludes with numerical examples which validate the theoretical conclusions.
科研通智能强力驱动
Strongly Powered by AbleSci AI