A facile and on-demand optimizing strategy for polyurethane elastomers via programmable hydrogen bonding

聚氨酯 弹性体 氢键 按需 材料科学 高分子科学 高分子化学 复合材料 计算机科学 化学 有机化学 分子 多媒体
作者
Zichen Bai,Xiaodong Li,Tianhao Wu,Hao Jiang,Xudong Zhang,Lichen Zhang,Yi Yang,Shuang Liu,Lisha Lei,Ningning Song,Zhengdi Wang,Xing Su,Meishuai Zou
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:492: 152110-152110
标识
DOI:10.1016/j.cej.2024.152110
摘要

Polyurethane elastomers address important significance in a wide range of applications. The mechanical properties including strength and toughness are of great importance, which are closely related to their unique hydrogen bonding structure. Unfortunately, the poor designability of hydrogen bonding structure in existing polyurethane severely restricts the on-demand regulation of their properties. Herein, a facile, universal and efficient modifying strategy based on stimuli-responsive polyphenol aggregates was proposed. Through precisely manipulated heat-induced aggregate division and/or photo-induced interfacial hydrogen bonding upgrading, programmable strengthening and toughening effect on the derived polyurethane elastomers could be achieved with high precision. Typically, the tensile strength and toughness of our proposed polyurethane elastomers could be enhanced by 3.23 and 2.22 times comparing with neat samples, respectively. The relevant results were supported by various characterizations and mathematical modeling. In addition, our polyurethane exhibited unique selective biocompatibility, rapid self-healing capability and recyclability, which could fulfill varieties of functions. Our proposed modifying strategy by using polyphenol aggregates can not only programmatically optimize the comprehensive properties of polyurethane, but also inspire programmable regulation of polymer performance through programmable design of its certain microstructure in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助dd采纳,获得10
1秒前
3秒前
哎呀发布了新的文献求助10
4秒前
ding应助hulala采纳,获得10
6秒前
7秒前
9秒前
Nienie发布了新的文献求助10
9秒前
10秒前
cgs发布了新的文献求助10
10秒前
科研通AI5应助pumpkin采纳,获得30
11秒前
12秒前
12秒前
Jiachenchen完成签到,获得积分10
13秒前
bkagyin应助Gideon采纳,获得10
13秒前
dd发布了新的文献求助10
14秒前
无限安蕾发布了新的文献求助30
14秒前
14秒前
ofa发布了新的文献求助10
15秒前
哈哈发布了新的文献求助10
17秒前
17秒前
UWUTUYU发布了新的文献求助10
18秒前
无花果应助魔幻梦芝采纳,获得10
19秒前
阿童木发布了新的文献求助10
19秒前
spinon发布了新的文献求助10
20秒前
Nienie完成签到,获得积分10
21秒前
隐形曼青应助橘里采纳,获得10
21秒前
gaoyang123完成签到 ,获得积分10
21秒前
25秒前
UWUTUYU完成签到,获得积分10
25秒前
ofa完成签到,获得积分20
27秒前
nice1025完成签到,获得积分10
27秒前
31秒前
32秒前
spinon完成签到,获得积分10
32秒前
儒雅香彤完成签到 ,获得积分10
36秒前
橘里发布了新的文献求助10
37秒前
玩命的十三完成签到 ,获得积分10
37秒前
39秒前
39秒前
思源应助寒冷的依凝采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781878
求助须知:如何正确求助?哪些是违规求助? 3327449
关于积分的说明 10231282
捐赠科研通 3042334
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799446
科研通“疑难数据库(出版商)”最低求助积分说明 758808