Minimum-Time Rendezvous via Simplified Initial Costate Normalization and Auxiliary Orbital Transfer

规范化(社会学) 轨道机动 轨道力学 会合 计算机科学 传输(计算) 控制理论(社会学) 物理 应用数学 数学 航天器 并行计算 天文 人工智能 卫星 控制(管理) 社会学 人类学
作者
Guo Xiang,Di Wu,Fanghua Jiang
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:: 1-10 被引量:4
标识
DOI:10.2514/1.g007268
摘要

No AccessEngineering NotesMinimum-Time Rendezvous via Simplified Initial Costate Normalization and Auxiliary Orbital TransferXiang Guo, Di Wu and Fanghua JiangXiang Guo https://orcid.org/0000-0002-3288-8070Tsinghua University, 100084 Beijing, People's Republic of China, Di WuTsinghua University, 100084 Beijing, People's Republic of China and Fanghua JiangTsinghua University, 100084 Beijing, People's Republic of ChinaPublished Online:4 May 2023https://doi.org/10.2514/1.G007268SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Rayman M. D., Fraschetti T. C., Raymond C. A. and Russell C. T., "Dawn: A Mission in Development for Exploration of Main Belt Asteroids Vesta and Ceres," Acta Astronautica, Vol. 58, No. 11, 2006, pp. 605–616. https://doi.org/10.1016/j.actaastro.2006.01.014 CrossrefGoogle Scholar[2] Watanabe S.-I., Tsuda Y., Yoshikawa M., Tanaka S., Saiki T. and Nakazawa S., "Hayabusa2 Mission Overview," Space Science Reviews, Vol. 208, Nos. 1–4, 2017, pp. 3–16. https://doi.org/10.1007/s11214-017-0377-1 Google Scholar[3] Cheng A. F., Rivkin A. S., Michel P., Atchison J., Barnouin O., Benner L., Chabot N. L., Ernst C., Fahnestock E. G., Kueppers M., Pravec P., Rainey E., Richardson D. C., Stickle A. M. and Thomas C., "AIDA DART Asteroid Deflection Test: Planetary Defense and Science Objectives," Planetary and Space Science, Vol. 157, Aug. 2018, pp. 104–115. https://doi.org/10.1016/j.pss.2018.02.015 CrossrefGoogle Scholar[4] Pan B., Pan X. and Lu P., "Finding Best Solution in Low-Thrust Trajectory Optimization by Two-Phase Homotopy," Journal of Spacecraft and Rockets, Vol. 56, No. 1, 2019, pp. 283–291. https://doi.org/10.2514/1.A34144 LinkGoogle Scholar[5] Wu D., Cheng L. and Li J., "Warm-Start Multihomotopic Optimization for Low-Thrust Many-Revolution Trajectories," IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 6, 2020, pp. 4478–4490. https://doi.org/10.1109/TAES.2020.2991704 CrossrefGoogle Scholar[6] Betts J. T., "Survey of Numerical Methods for Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. https://doi.org/10.2514/2.4231 LinkGoogle Scholar[7] Enright P. J. and Conway B. A., "Discrete Approximations to Optimal Trajectories Using Direct Transcription and Nonlinear Programming," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, 1992, pp. 994–1002. https://doi.org/10.2514/3.20934 LinkGoogle Scholar[8] Wang Y. and Topputo F., "Indirect Optimization of Power-Limited Asteroid Rendezvous Trajectories," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 5, 2022, pp. 962–971. https://doi.org/10.2514/1.G006179 LinkGoogle Scholar[9] Morante D., Sanjurjo Rivo M. and Soler M., "A Survey on Low-Thrust Trajectory Optimization Approaches," Aerospace, Vol. 8, No. 3, 2021, p. 88. https://doi.org/10.3390/aerospace8030088 CrossrefGoogle Scholar[10] Tang G. and Hauser K., "A Data-Driven Indirect Method for Nonlinear Optimal Control," Astrodynamics, Vol. 3, No. 4, 2019, pp. 345–359. https://doi.org/10.1007/s42064-019-0051-3 CrossrefGoogle Scholar[11] Jiang F., Baoyin H. and Li J., "Practical Techniques for Low-Thrust Trajectory Optimization with Homotopic Approach," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 1, 2012, pp. 245–258. https://doi.org/10.2514/1.52476 LinkGoogle Scholar[12] Jawaharlal Ayyanathan P. and Taheri E., "Mapped Adjoint Control Transformation Method for Low-Thrust Trajectory Design," Acta Astronautica, Vol. 193, April 2022, pp. 418–431. https://doi.org/10.1016/j.actaastro.2021.12.019 CrossrefGoogle Scholar[13] Benson D. A., Huntington G. T., Thorvaldsen T. P. and Rao A. V., "Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method," Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1435–1440. https://doi.org/10.2514/1.20478 LinkGoogle Scholar[14] Dixon L. C. W. and Bartholomew-Biggs M. C., "Adjoint-Control Transformations for Solving Practical Optimal Control Problems," Optimal Control Applications and Methods, Vol. 2, No. 4, 1981, pp. 365–381. https://doi.org/10.1002/oca.4660020405 CrossrefGoogle Scholar[15] Taheri E., Li N. I. and Kolmanovsky I., "Co-State Initialization for the Minimum-Time Low-Thrust Trajectory Optimization," Advances in Space Research, Vol. 59, No. 9, 2017, pp. 2360–2373. https://doi.org/10.1016/j.asr.2017.02.010 CrossrefGoogle Scholar[16] Skamangas E. E., Lawton J. A. and Black J. T., "Analytic Costate Initialization from Rough State-Trajectory Estimates," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 12, 2021, pp. 2318–2326. https://doi.org/10.2514/1.G005224 LinkGoogle Scholar[17] Jiang F., Tang G. and Li J., "Improving Low-Thrust Trajectory Optimization by Adjoint Estimation with Shape-Based Path," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3282–3289. https://doi.org/10.2514/1.G002803 LinkGoogle Scholar[18] Wu D., Cheng L., Jiang F. and Li J., "Analytical Costate Estimation by a Reference Trajectory-Based Least-Squares Method," Journal of Guidance, Control, and Dynamics, Vol. 45, No. 8, 2022, pp. 1529–1537. https://doi.org/10.2514/1.G006502 LinkGoogle Scholar[19] Vasile M., De Pascale P. and Casotto S., "On the Optimality of a Shape-Based Approach Based on Pseudo-Equinoctial Elements," Acta Astronautica, Vol. 61, Nos. 1–6, 2007, pp. 286–297. https://doi.org/10.1016/j.actaastro.2007.01.017 CrossrefGoogle Scholar[20] Lu P., Griffin B. J., Dukeman G. A. and Chavez F. R., "Rapid Optimal Multiburn Ascent Planning and Guidance," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1656–1664. https://doi.org/10.2514/1.36084 LinkGoogle Scholar[21] Graham K. F. and Rao A. V., "Minimum-Time Trajectory Optimization of Multiple Revolution Low-Thrust Earth-Orbit Transfers," Journal of Spacecraft and Rockets, Vol. 52, No. 3, 2015, pp. 711–727. https://doi.org/10.2514/1.A33187 LinkGoogle Scholar[22] Pan B., Pan X. and Zhang S., "A New Probability-One Homotopy Method for Solving Minimum-Time Low-Thrust Orbital Transfer Problems," Astrophysics and Space Science, Vol. 363, No. 9, 2018, p. 198. https://doi.org/10.1007/s10509-018-3420-0 CrossrefGoogle Scholar[23] Shen H., Luo Y., Zhu Y. and Huang A., "Dyson Sphere Building: On the Design of the GTOC11 Problem and Summary of the Results," Acta Astronautica, Vol. 202, Jan. 2022, pp. 889–898. https://doi.org/j.actaastro.2022.08.040 Google Scholar[24] Junkins J. L. and Taheri E., "Exploration of Alternative State Vector Choices for Low-Thrust Trajectory Optimization," Journal of Guidance, Control, and Dynamics, Vol. 42, No. 1, 2019, pp. 47–64. https://doi.org/10.2514/1.G003686 LinkGoogle Scholar[25] Gao Y. and Kluever C., "Low-Thrust Interplanetary Orbit Transfers Using Hybrid Trajectory Optimization Method with Multiple Shooting," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-5088, 2004. https://doi.org/10.2514/6.2004-5088 Google Scholar[26] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA, New York, 1999, pp. 191–236. Google Scholar[27] Lewis F. L., Vrabie D. and Syrmos V. L., Optimal Control, Wiley, Hoboken, NJ, 2012, pp. 213–259. Google Scholar[28] Taheri E., Arya V. and Junkins J. L., "Costate Mapping for Indirect Trajectory Optimization," Astrodynamics, Vol. 5, No. 4, 2021, pp. 359–371. https://doi.org/10.1007/s42064-021-0114-0 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. KeywordsLow ThrustMinimum-Time RendezvousSimplified Initial Costate NormalizationAuxiliary Orbital TransferAcknowledgmentsThis work was supported by the National Key R&D Program of China (Grant No. 2020YFC2201200) and the National Natural Science Foundation of China (Grant No. 12022214).PDF Received29 September 2022Accepted15 March 2023Published online4 May 2023

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111111111111发布了新的文献求助10
刚刚
小陈完成签到,获得积分10
1秒前
3秒前
李健应助麦田守望者采纳,获得10
4秒前
monster0101发布了新的文献求助10
6秒前
karcorl发布了新的文献求助30
7秒前
HEAUBOOK应助1111111111111采纳,获得10
7秒前
Serena关注了科研通微信公众号
9秒前
11秒前
12秒前
科研通AI5应助feiying88采纳,获得10
14秒前
14秒前
ShiRz发布了新的文献求助10
14秒前
15秒前
karcorl完成签到,获得积分10
15秒前
16秒前
鲁路修发布了新的文献求助10
17秒前
茶荼发布了新的文献求助10
18秒前
19秒前
哈利波特发布了新的文献求助10
21秒前
乐乐应助茶荼采纳,获得10
22秒前
Serena发布了新的文献求助10
22秒前
22秒前
彭于晏应助无限的谷丝采纳,获得10
23秒前
着急的cc完成签到,获得积分10
23秒前
天天快乐应助xin采纳,获得10
24秒前
25秒前
在水一方应助易槐采纳,获得10
26秒前
梓毅发布了新的文献求助20
26秒前
着急的cc发布了新的文献求助10
27秒前
33秒前
852应助郭宇采纳,获得10
34秒前
淡然的金针菇完成签到,获得积分20
34秒前
babyhead发布了新的文献求助10
37秒前
医学小王发布了新的文献求助10
38秒前
38秒前
eee应助HiNDT采纳,获得10
40秒前
fuiee完成签到,获得积分10
42秒前
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976