Human–machine hybrid intelligence for the generation of car frontal forms

人类智力 人机系统 人工智能 计算机科学 机器学习 知识库 生成语法 认知 过程(计算) 人机交互 心理学 神经科学 操作系统
作者
Yu Tzu Wu,Lisha Ma,Xiaofang Yuan,Qingnan Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101906-101906 被引量:16
标识
DOI:10.1016/j.aei.2023.101906
摘要

With the acceleration of the upgrading of the automobile consumption market, artificial intelligence has become an increasingly effective means of enhancing the creative design of automobile appearance modeling. However, when artificial intelligence processes specific design tasks, creativity is primarily based on data drive, resulting in machine-generated design schemes that do not match human-specific psychological intentions. Due to the absence of design knowledge in the process of machine design, there is a data gap between human cognitive thought and machine information processing. This paper aims to structure the human's complex cognitive knowledge of car frontal form, establish the consistency between human and machine cognitive structures, and reduce communication barriers in the process of human–machine hybrid creative design. To achieve this objective, a human–machine hybrid intelligence methodology – a combination of human cognitive mental model, human–machine shared knowledge base, and Generative Adversarial Networks (GAN) – was developed to generate a large number of car frontal forms that are consistent with the design intent. First, we constructed a mental model of human cognition based on three dimensions: design intent, drawing behavior, and functional structure. Second, we created a shared human–machine knowledge base with design Knowledge. This knowledge base contains 12,560 images of car frontal form designs with corresponding morphological semantic labels and 3,140 sketches of car frontal forms drawn by hand. Human–machine shared knowledge base data was utilized in a machine learning training network. In addition, a conditional cross-domain generative adversarial network was developed to investigate the implicit relationship between sketch characteristics, morphological semantics, and image visual effects. Using the suggested method, a large number of images with the specified morphological semantic category and resembling the hand-drawn sketch of a car frontal form can be generated rapidly. In terms of the quality of car frontal form generation, our research is superior to the baseline model according to qualitative and quantitative assessments. In comparison to the designer's output, the human–machine hybrid intelligent generation also demonstrates excellent creative performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zhangyue7777完成签到,获得积分10
1秒前
1秒前
2秒前
chhe发布了新的文献求助10
2秒前
SSS完成签到,获得积分10
2秒前
小白t73发布了新的文献求助10
4秒前
dong完成签到,获得积分20
5秒前
李康佳关注了科研通微信公众号
5秒前
6秒前
maggie发布了新的文献求助10
6秒前
不安忆安完成签到,获得积分20
7秒前
dong发布了新的文献求助10
8秒前
10秒前
我是老大应助chhe采纳,获得10
11秒前
ccm应助不安忆安采纳,获得10
11秒前
maggie完成签到,获得积分20
11秒前
小豹子发布了新的文献求助10
15秒前
16秒前
16秒前
18秒前
18秒前
19秒前
box1221发布了新的文献求助10
20秒前
简单发布了新的文献求助10
21秒前
21秒前
大模型应助猕猴桃采纳,获得10
21秒前
希望天下0贩的0应助xu采纳,获得10
21秒前
谦让可冥发布了新的文献求助10
22秒前
23秒前
小橘发布了新的文献求助10
23秒前
23秒前
流年发布了新的文献求助10
24秒前
笨笨善若发布了新的文献求助30
24秒前
25秒前
26秒前
nh3完成签到,获得积分10
27秒前
高高的书本完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
husaheng发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049694
求助须知:如何正确求助?哪些是违规求助? 4277494
关于积分的说明 13334004
捐赠科研通 4092291
什么是DOI,文献DOI怎么找? 2239581
邀请新用户注册赠送积分活动 1246414
关于科研通互助平台的介绍 1175034