清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Human–machine hybrid intelligence for the generation of car frontal forms

人类智力 人机系统 人工智能 计算机科学 机器学习 知识库 生成语法 认知 过程(计算) 人机交互 心理学 神经科学 操作系统
作者
Yu Tzu Wu,Lisha Ma,Xiaofang Yuan,Qingnan Li
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101906-101906 被引量:16
标识
DOI:10.1016/j.aei.2023.101906
摘要

With the acceleration of the upgrading of the automobile consumption market, artificial intelligence has become an increasingly effective means of enhancing the creative design of automobile appearance modeling. However, when artificial intelligence processes specific design tasks, creativity is primarily based on data drive, resulting in machine-generated design schemes that do not match human-specific psychological intentions. Due to the absence of design knowledge in the process of machine design, there is a data gap between human cognitive thought and machine information processing. This paper aims to structure the human's complex cognitive knowledge of car frontal form, establish the consistency between human and machine cognitive structures, and reduce communication barriers in the process of human–machine hybrid creative design. To achieve this objective, a human–machine hybrid intelligence methodology – a combination of human cognitive mental model, human–machine shared knowledge base, and Generative Adversarial Networks (GAN) – was developed to generate a large number of car frontal forms that are consistent with the design intent. First, we constructed a mental model of human cognition based on three dimensions: design intent, drawing behavior, and functional structure. Second, we created a shared human–machine knowledge base with design Knowledge. This knowledge base contains 12,560 images of car frontal form designs with corresponding morphological semantic labels and 3,140 sketches of car frontal forms drawn by hand. Human–machine shared knowledge base data was utilized in a machine learning training network. In addition, a conditional cross-domain generative adversarial network was developed to investigate the implicit relationship between sketch characteristics, morphological semantics, and image visual effects. Using the suggested method, a large number of images with the specified morphological semantic category and resembling the hand-drawn sketch of a car frontal form can be generated rapidly. In terms of the quality of car frontal form generation, our research is superior to the baseline model according to qualitative and quantitative assessments. In comparison to the designer's output, the human–machine hybrid intelligent generation also demonstrates excellent creative performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
ssffzb2008发布了新的文献求助10
31秒前
发个15分的完成签到 ,获得积分10
32秒前
ssffzb2008完成签到,获得积分10
48秒前
子春完成签到 ,获得积分10
1分钟前
prawn218完成签到 ,获得积分10
1分钟前
mashibeo完成签到,获得积分10
1分钟前
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
maggiexjl完成签到,获得积分10
2分钟前
wujiwuhui完成签到 ,获得积分10
2分钟前
潘fujun完成签到 ,获得积分10
2分钟前
3分钟前
光合作用完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Party完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助震动的凡柔采纳,获得10
5分钟前
CherylZhao完成签到,获得积分10
5分钟前
无悔完成签到 ,获得积分10
5分钟前
lilaccalla完成签到 ,获得积分10
5分钟前
六一完成签到 ,获得积分10
5分钟前
6分钟前
丹妮完成签到 ,获得积分10
6分钟前
6分钟前
ndx1993完成签到 ,获得积分10
7分钟前
飞快的冰淇淋完成签到 ,获得积分10
7分钟前
慕青应助Mine采纳,获得10
7分钟前
ZJakariae应助Sandy采纳,获得10
7分钟前
勤劳冰烟完成签到,获得积分10
8分钟前
Ava应助狂野的大公猪采纳,获得10
8分钟前
研友_LpvQlZ完成签到,获得积分10
8分钟前
8分钟前
9分钟前
533发布了新的文献求助10
9分钟前
533完成签到,获得积分20
9分钟前
直率的笑翠完成签到 ,获得积分10
9分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360245
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076