Engineering the Substrate Specificity of Toluene Degrading Enzyme XylM Using Biosensor XylS and Machine Learning

恶臭假单胞菌 基质(水族馆) 化学 生物化学 苯甲酸 生物传感器 组合化学 色谱法 生物 生态学
作者
Yuki Ogawa,Yutaka Saitô,Hideki Yamaguchi,Yohei Katsuyama,Yasuo Ohnishi
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:12 (2): 572-582 被引量:8
标识
DOI:10.1021/acssynbio.2c00577
摘要

Enzyme engineering using machine learning has been developed in recent years. However, to obtain a large amount of data on enzyme activities for training data, it is necessary to develop a high-throughput and accurate method for evaluating enzyme activities. Here, we examined whether a biosensor-based enzyme engineering method can be applied to machine learning. As a model experiment, we aimed to modify the substrate specificity of XylM, a rate-determining enzyme in a multistep oxidation reaction catalyzed by XylMABC in Pseudomonas putida. XylMABC naturally converts toluene and xylene to benzoic acid and toluic acid, respectively. We aimed to engineer XylM to improve its conversion efficiency to a non-native substrate, 2,6-xylenol. Wild-type XylMABC slightly converted 2,6-xylenol to 3-methylsalicylic acid, which is the ligand of the transcriptional regulator XylS in P. putida. By locating a fluorescent protein gene under the control of the Pm promoter to which XylS binds, a XylS-producing Escherichia coli strain showed higher fluorescence intensity in a 3-methylsalicylic acid concentration-dependent manner. We evaluated the 3-methylsalicylic acid productivity of XylM variants using the fluorescence intensity of the sensor strain as an indicator. The obtained data provided the training data for machine learning for the directed evolution of XylM. Two cycles of machine learning-assisted directed evolution resulted in the acquisition of XylM-D140E-V144K-F243L-N244S with 15 times higher productivity than wild-type XylM. These results demonstrate that an indirect enzyme activity evaluation method using biosensors is sufficiently quantitative and high-throughput to be used as training data for machine learning. The findings expand the versatility of machine learning in enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饱满的新之完成签到 ,获得积分10
1秒前
子虚一尘完成签到,获得积分10
5秒前
喜悦香萱发布了新的文献求助10
6秒前
fsznc1完成签到 ,获得积分0
11秒前
HHYYAA完成签到,获得积分10
15秒前
Orange应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
HHYYAA发布了新的文献求助10
19秒前
李健的小迷弟应助HHYYAA采纳,获得10
22秒前
smin完成签到,获得积分10
23秒前
Jeamren完成签到,获得积分10
24秒前
风趣丝发布了新的文献求助10
24秒前
zz完成签到,获得积分10
25秒前
黑猫小苍完成签到,获得积分10
25秒前
沉静寒云完成签到 ,获得积分10
25秒前
babyhead完成签到,获得积分10
29秒前
赘婿应助wowser采纳,获得10
32秒前
Orange应助韩hqf采纳,获得10
34秒前
随风完成签到,获得积分10
36秒前
37秒前
Bob完成签到,获得积分10
38秒前
JHcHuN完成签到,获得积分10
39秒前
40秒前
40秒前
Lucas应助黑猫小苍采纳,获得10
41秒前
JHcHuN发布了新的文献求助10
42秒前
zzf完成签到,获得积分10
42秒前
萧水白完成签到,获得积分10
42秒前
wowser发布了新的文献求助10
45秒前
zzf发布了新的文献求助10
45秒前
meimale完成签到,获得积分10
48秒前
雪白的紫翠完成签到 ,获得积分10
49秒前
50秒前
zhl完成签到,获得积分10
52秒前
现代的紫霜完成签到,获得积分10
54秒前
喜悦香萱发布了新的文献求助10
54秒前
秋风今是完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734