羧酸酯酶
下调和上调
叶螨
杀螨剂
酯酶
生物
RNA干扰
基因沉默
基因
基因表达
生物化学
酶
化学
毒理
蜘蛛螨
植物
有害生物分析
核糖核酸
作者
Wei Peng,Ming Chen,Can Nan,Kaiyang Feng,Guangmao Shen,Jiqiang Cheng,Lin He
摘要
Increased expression or point mutations of carboxyl/cholinesterases (CCEs) have been involved in many cases of insecticide and acaricide resistance. However, it has been only rarely documented that downregulation of CCE genes is associated with resistance, although many insecticides and acaricides need hydrolytic activation in vivo. Previously, expression analysis of a laboratory-selected cyflumetofen-resistant strain of Tetranychus cinnabarinus indicated that resistance was associated with increased expression of a CCE gene of TcCCE04, but also the downregulation of two CCE genes, TcCCE12 and TcCCE23.Synergism experiments revealed the importance of ester hydrolysis in cyflumetofen toxicity, because treatment with S,S,S-tributylphosphorotrithioate (DEF) caused strong inhibition of cyflumetofen hydrolysis, in both the susceptible and resistant strains. Moreover, silencing expression of TcCCE12 and TcCCE23 via RNAi further decreased the susceptibility of mites to cyflumetofen significantly, suggesting that downregulated CCE genes could be involved in cyflumetofen resistance. In addition, it was shown that recombinant TcCCE12 protein could hydrolyze cyflumetofen effectively.Decreased esterase activity via downregulation of specific CCE genes most likely contributes to cyflumetofen resistance by decreased activation of cyflumetofen to its active metabolite. Mixtures of cyflumetofen and esterase-inhibition acaricides (e.g. organophosphates or carbamates) should be avoided in field applications. © 2019 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI