材料科学
纳米复合材料
电介质
电场
复合材料
聚合物纳米复合材料
聚合物
聚丙烯
铁电性
介电损耗
介电常数
相(物质)
铁电聚合物
光电子学
有机化学
物理
化学
量子力学
作者
Jianyong Jiang,Zhonghui Shen,Jianfeng Qian,Zhenkang Dan,Mengfan Guo,Yuanhua Lin,Ce‐Wen Nan,Long‐Qing Chen,Yang Shen
标识
DOI:10.1016/j.ensm.2018.09.013
摘要
Poly(vinylidene fluoride) (PVDF)-based dielectric polymers are in great demand for the future electronic and electrical industry because of their high dielectric constants and energy density. However, some issues that limit their practical applications remain unsolved. One of the most urgent issues is their high dielectric loss and hence low efficiency. In this contribution, we proposed and demonstrate that substantially enhanced discharge efficiency of PVDF-based polymers nanocomposites could be achieved by simultaneously optimizing their topological-structure and phase composition. In the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP))/poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorofluoroethylene) (P(VDF-TrFE-CFE)) multilayered nanocomposites fabricated by non-equilibrium process, an ultrahigh discharge efficiency of ~85% is achieved up to 600 MV/m, which is the highest discharge efficiency reported so far for any polar-polymer dielectric materials at such high electric field. By adjusting the quenching temperature, the phase-composition hence dielectric permittivity in the terpolymer layers could be tuned for suppressed ferroelectric loss. Results of phase-field simulations further reveal that local electric field is substantially weakened at the interfaces between the Co/Ter polymer layers, which will act as barriers to motion of charge carriers and give rise to much suppressed conduction loss and a remarkably enhanced breakdown strength. Synergy of the optimized topological-structure and phase-composition thus leads to a nanocomposite that exhibits an unprecedented high discharge efficiency of the multilayered nanocomposites that is comparable to the bench-mark biaxially oriented polypropylene (BOPP) at high electric field as well as a high discharge energy density that is over 10 times higher than that of BOPP.
科研通智能强力驱动
Strongly Powered by AbleSci AI