非线性自回归外生模型
ISFET
反向传播
人工神经网络
自回归模型
均方误差
非线性系统
计算机科学
补偿(心理学)
控制理论(社会学)
人工智能
数学
统计
电压
工程类
物理
场效应晶体管
精神分析
电气工程
量子力学
晶体管
控制(管理)
心理学
作者
Mohammad Iqwhanus Syaffa Amir,MD Rizal bin Othman,Mohd Ismahadi Syono
出处
期刊:International journal of engineering & technology
[Science Publishing Corporation]
日期:2018-12-09
卷期号:7 (4.33): 472-472
被引量:1
标识
DOI:10.14419/ijet.v7i4.33.28158
摘要
This paper introduces a Nonlinear Autoregressive Neural Network (NARX) to predict the sensor error of IsFET pH drift with accuracy over the long period. The Bayesian Regularization (BR) backpropagation was used as network training function for this problem and combined with different delay and hidden layer. The results were compared to predict the sensor error in buffer solution pH 4, pH 7 and pH 10 over the time. The NARX performance will be measure based on the value of Mean Squared Error (MSE) and coefficient of determination (R2). The results proved by using Bayesian Regularization with 10 hidden nodes and 50 delays produced the accurate sensor error prediction. This research will provide the significant contributions to the implementation of IsFET pH sensor drift compensation over the time.
科研通智能强力驱动
Strongly Powered by AbleSci AI