State-of-charge estimation for lithium-ion battery during constant current charging process based on model parameters updated periodically

恒流 荷电状态 电流(流体) 锂离子电池 锂(药物) 常量(计算机编程) 国家(计算机科学) 离子 计算机科学 电荷(物理) 电池(电) 过程(计算) 时间常数 电气工程 材料科学 工程类 算法 化学 热力学 功率(物理) 有机化学 程序设计语言 内分泌学 物理 医学 量子力学 操作系统
作者
Shuzhi Zhang,Qiang Zhang,Dayong Liu,Xiaoyan Dai,Xiongwen Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:257: 124770-124770 被引量:10
标识
DOI:10.1016/j.energy.2022.124770
摘要

With online established battery model, model-based estimation method can track battery state-of-charge (SOC) precisely under dynamic conditions. Nevertheless, both recursive least square-based and filter-based methods cannot distinguish whether the voltage difference comes from SOC difference or internal resistance difference during constant current (CC) conditions, further leading to erroneously identified model parameters and inaccurate SOC estimation. To address this issue, a novel SOC estimation method during CC charging process by fusion of global optimization algorithm and Kalman filter family algorithm is developed in this paper. Firstly, some key parameters that are helpful for initialization and lower/upper bounds setting for global optimization method are extracted from electric vehicles’ driving process. Secondly, considering the shortcomings in traditional global optimization methods, including possible premature convergence, slow search speed in the late stage and relatively large computational cost, an improved particle swarm optimization is designed to periodically update model parameters during CC charging process. With obtained model parameters, SOC is further tracked via extended Kalman filter (EKF). The verification results based on experimental data demonstrates that the developed method can significantly weaken the strong cross-interference between model parameters and SOC, further achieving much more accurate SOC estimation than existing dual/joint EKF during CC charging process. • A novel SOC online estimation method during CC charging process is proposed. • IPSO is designed to periodically update model parameters during CC charging process. • Some key parameters used for IPSO algorithm are extracted from EVs' driving process. • The cross-interference between model parameters and SOC can be greatly weakened. • The proposed method can track SOC much more precisely than existing dual/joint EKF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Rat采纳,获得10
2秒前
首席医官完成签到,获得积分10
2秒前
内向雅香发布了新的文献求助10
2秒前
lili发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
gao发布了新的文献求助20
6秒前
6秒前
安安完成签到 ,获得积分10
6秒前
6秒前
顺心靖雁完成签到,获得积分10
8秒前
8秒前
搜集达人应助紫心采纳,获得10
9秒前
9秒前
何博发布了新的文献求助10
10秒前
遥光圣寒完成签到,获得积分10
10秒前
JamesPei应助lili采纳,获得10
11秒前
11秒前
科目三应助XLL小绿绿采纳,获得10
13秒前
liuyamei发布了新的文献求助10
13秒前
14秒前
14秒前
einspringen发布了新的文献求助10
16秒前
U9A发布了新的文献求助10
16秒前
欣喜的成败完成签到,获得积分20
18秒前
18秒前
俍璟完成签到 ,获得积分10
19秒前
無期完成签到 ,获得积分10
20秒前
紫心发布了新的文献求助10
23秒前
23秒前
27秒前
Rat发布了新的文献求助10
27秒前
华仔应助殷一丹采纳,获得10
28秒前
30秒前
31秒前
淀粉发布了新的文献求助10
32秒前
34秒前
35秒前
xhs发布了新的文献求助10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965173
求助须知:如何正确求助?哪些是违规求助? 3510528
关于积分的说明 11153563
捐赠科研通 3244811
什么是DOI,文献DOI怎么找? 1792609
邀请新用户注册赠送积分活动 873928
科研通“疑难数据库(出版商)”最低求助积分说明 804081