清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

State-of-charge estimation for lithium-ion battery during constant current charging process based on model parameters updated periodically

恒流 荷电状态 电流(流体) 锂离子电池 锂(药物) 常量(计算机编程) 国家(计算机科学) 离子 计算机科学 电荷(物理) 电池(电) 过程(计算) 时间常数 电气工程 材料科学 工程类 算法 化学 热力学 功率(物理) 有机化学 程序设计语言 内分泌学 物理 医学 量子力学 操作系统
作者
Shuzhi Zhang,Qiang Zhang,Dayong Liu,Xiaoyan Dai,Xiongwen Zhang
出处
期刊:Energy [Elsevier]
卷期号:257: 124770-124770 被引量:10
标识
DOI:10.1016/j.energy.2022.124770
摘要

With online established battery model, model-based estimation method can track battery state-of-charge (SOC) precisely under dynamic conditions. Nevertheless, both recursive least square-based and filter-based methods cannot distinguish whether the voltage difference comes from SOC difference or internal resistance difference during constant current (CC) conditions, further leading to erroneously identified model parameters and inaccurate SOC estimation. To address this issue, a novel SOC estimation method during CC charging process by fusion of global optimization algorithm and Kalman filter family algorithm is developed in this paper. Firstly, some key parameters that are helpful for initialization and lower/upper bounds setting for global optimization method are extracted from electric vehicles’ driving process. Secondly, considering the shortcomings in traditional global optimization methods, including possible premature convergence, slow search speed in the late stage and relatively large computational cost, an improved particle swarm optimization is designed to periodically update model parameters during CC charging process. With obtained model parameters, SOC is further tracked via extended Kalman filter (EKF). The verification results based on experimental data demonstrates that the developed method can significantly weaken the strong cross-interference between model parameters and SOC, further achieving much more accurate SOC estimation than existing dual/joint EKF during CC charging process. • A novel SOC online estimation method during CC charging process is proposed. • IPSO is designed to periodically update model parameters during CC charging process. • Some key parameters used for IPSO algorithm are extracted from EVs' driving process. • The cross-interference between model parameters and SOC can be greatly weakened. • The proposed method can track SOC much more precisely than existing dual/joint EKF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
lawang发布了新的文献求助10
27秒前
萨尔莫斯完成签到,获得积分10
36秒前
45秒前
大饼完成签到 ,获得积分10
48秒前
ww发布了新的文献求助10
52秒前
1分钟前
SUNny发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
2分钟前
lawang完成签到,获得积分10
2分钟前
ww完成签到,获得积分10
2分钟前
mkeale应助科研通管家采纳,获得20
2分钟前
兆兆完成签到 ,获得积分10
2分钟前
慕青应助光能使者采纳,获得30
3分钟前
3分钟前
光能使者发布了新的文献求助30
3分钟前
qi完成签到 ,获得积分10
3分钟前
SUNny完成签到 ,获得积分10
3分钟前
光能使者完成签到 ,获得积分10
4分钟前
4分钟前
夏茉弋发布了新的文献求助10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
华仔应助夏茉弋采纳,获得10
4分钟前
失眠的冬易完成签到 ,获得积分10
5分钟前
所所应助胡小壳采纳,获得10
5分钟前
5分钟前
5分钟前
菜菜博士发布了新的文献求助10
5分钟前
菜菜博士完成签到,获得积分10
6分钟前
6分钟前
胡小壳发布了新的文献求助10
6分钟前
蝎子莱莱xth完成签到,获得积分10
6分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
6分钟前
Square完成签到,获得积分10
6分钟前
6分钟前
lling完成签到 ,获得积分10
6分钟前
开心每一天完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639795
求助须知:如何正确求助?哪些是违规求助? 4750612
关于积分的说明 15007386
捐赠科研通 4798008
什么是DOI,文献DOI怎么找? 2564098
邀请新用户注册赠送积分活动 1522944
关于科研通互助平台的介绍 1482630