State-of-charge estimation for lithium-ion battery during constant current charging process based on model parameters updated periodically

恒流 荷电状态 电流(流体) 锂离子电池 锂(药物) 常量(计算机编程) 国家(计算机科学) 离子 计算机科学 电荷(物理) 电池(电) 过程(计算) 时间常数 电气工程 材料科学 工程类 算法 化学 热力学 功率(物理) 有机化学 程序设计语言 内分泌学 物理 医学 量子力学 操作系统
作者
Shuzhi Zhang,Qiang Zhang,Dayong Liu,Xiaoyan Dai,Xiongwen Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:257: 124770-124770 被引量:10
标识
DOI:10.1016/j.energy.2022.124770
摘要

With online established battery model, model-based estimation method can track battery state-of-charge (SOC) precisely under dynamic conditions. Nevertheless, both recursive least square-based and filter-based methods cannot distinguish whether the voltage difference comes from SOC difference or internal resistance difference during constant current (CC) conditions, further leading to erroneously identified model parameters and inaccurate SOC estimation. To address this issue, a novel SOC estimation method during CC charging process by fusion of global optimization algorithm and Kalman filter family algorithm is developed in this paper. Firstly, some key parameters that are helpful for initialization and lower/upper bounds setting for global optimization method are extracted from electric vehicles’ driving process. Secondly, considering the shortcomings in traditional global optimization methods, including possible premature convergence, slow search speed in the late stage and relatively large computational cost, an improved particle swarm optimization is designed to periodically update model parameters during CC charging process. With obtained model parameters, SOC is further tracked via extended Kalman filter (EKF). The verification results based on experimental data demonstrates that the developed method can significantly weaken the strong cross-interference between model parameters and SOC, further achieving much more accurate SOC estimation than existing dual/joint EKF during CC charging process. • A novel SOC online estimation method during CC charging process is proposed. • IPSO is designed to periodically update model parameters during CC charging process. • Some key parameters used for IPSO algorithm are extracted from EVs' driving process. • The cross-interference between model parameters and SOC can be greatly weakened. • The proposed method can track SOC much more precisely than existing dual/joint EKF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Mono采纳,获得30
刚刚
呆萌的雅彤完成签到,获得积分10
刚刚
1秒前
侯_发布了新的文献求助10
1秒前
3秒前
Juliette发布了新的文献求助10
4秒前
4秒前
完美世界应助zzz采纳,获得10
4秒前
4秒前
4秒前
科研小白_发布了新的文献求助10
5秒前
6秒前
夜王发布了新的文献求助10
6秒前
8秒前
小李发布了新的文献求助10
8秒前
上官若男应助flyingclown采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
风清扬应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
科研回收站完成签到,获得积分20
10秒前
10秒前
10秒前
杨胜菲发布了新的文献求助10
10秒前
弓长广发发布了新的文献求助10
11秒前
小青椒应助知性的尔曼采纳,获得30
11秒前
京墨发布了新的文献求助10
11秒前
深情安青应助zzz627采纳,获得10
13秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114