Data-Based Collaborative Learning for Multiagent Systems Under Distributed Denial-of-Service Attacks

计算机科学 服务拒绝攻击 计算机安全 多智能体系统 服务(商务) 分布式计算 人机交互 人工智能 互联网 经济 万维网 经济
作者
Yong Xu,Zheng‐Guang Wu
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 75-85 被引量:14
标识
DOI:10.1109/tcds.2022.3172937
摘要

This article employs a reinforcement learning (RL) technique to investigate the distributed output tracking control of heterogeneous multiagent systems (MASs) under multiple Denial-of-Service (DoS) attacks. Different from existing results where the dynamic of the leader is known for partial or all agents, the leader's system matrix is completely unknown for each follower in this article. To learn the leader system matrix, a data-based learning mechanism is first proposed using the idea of the data-driven method. Then, under the data-based learning mechanism, a resilient predictor subject to multiple DoS attacks is exploited to provide the estimation of the leader's state for each agent, where adversaries attack different communication links independently. Moreover, a resilient dynamic output feedback controller is proposed to solve the output tracking control problem based on the output regulation theory. To consider the transient responses of agents, an RL-based dynamic output feedback controller is developed to realize the optimal output tracking control by solving discounted algebraic Riccati equations (AREs) in both offline and online ways. Theoretical analysis shows that the secure output tracking control of MASs can be achieved under the proposed data-based resilient learning control algorithm. Finally, a numerical example is provided to verify the effectiveness of theoretical analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
某某发布了新的文献求助10
1秒前
1秒前
2秒前
小杨完成签到,获得积分10
2秒前
3秒前
勤奋的姒完成签到 ,获得积分10
3秒前
大方百招完成签到,获得积分10
3秒前
5秒前
lzl008完成签到 ,获得积分10
5秒前
6秒前
6秒前
huangzitong发布了新的文献求助10
6秒前
huangzitong发布了新的文献求助10
6秒前
huangzitong发布了新的文献求助10
6秒前
huangzitong发布了新的文献求助10
6秒前
huangzitong发布了新的文献求助10
7秒前
7秒前
huangzitong发布了新的文献求助10
7秒前
7秒前
huangzitong发布了新的文献求助10
7秒前
huangzitong发布了新的文献求助10
7秒前
huangzitong发布了新的文献求助10
7秒前
huangzitong发布了新的文献求助10
7秒前
8秒前
huangzitong发布了新的文献求助10
8秒前
huangzitong发布了新的文献求助10
8秒前
某某完成签到,获得积分10
8秒前
9秒前
12秒前
huangzitong发布了新的文献求助10
12秒前
huangzitong发布了新的文献求助10
12秒前
huangzitong发布了新的文献求助10
12秒前
lzl007完成签到 ,获得积分10
12秒前
15秒前
一团小煤球完成签到,获得积分10
16秒前
阿琪发布了新的文献求助10
18秒前
现实的洋葱完成签到 ,获得积分10
21秒前
汉堡包应助cookie486采纳,获得10
22秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801417
求助须知:如何正确求助?哪些是违规求助? 3347095
关于积分的说明 10331991
捐赠科研通 3063419
什么是DOI,文献DOI怎么找? 1681640
邀请新用户注册赠送积分活动 807639
科研通“疑难数据库(出版商)”最低求助积分说明 763843