Deep Adversarial Data Augmentation for Fabric Defect Classification With Scarce Defect Data

判别式 对抗制 计算机科学 人工智能 任务(项目管理) 深度学习 人工神经网络 纹理(宇宙学) 模式识别(心理学) 质量(理念) 机器学习 计算机视觉 图像(数学) 工程类 哲学 系统工程 认识论
作者
Bingyu Lu,Meng Zhang,Biqing Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:3
标识
DOI:10.1109/tim.2022.3185609
摘要

Fabric defect classification is a crucial and challenging task for fabric production quality guarantee. In recent years, many deep neural network-based methods have been proposed and shown promising performance on this task. However, it would be laborious and time-consuming to collect enough defect images to satisfy high-quality training because that defects are too rare in factories. In this paper, we propose a deep adversarial data augmentation method named DefectTransfer to address the defect data scarcity issue. Since the defect may happen anywhere on the background texture with any size, we consider the position and size of a defect should not be fully linked to the background texture in the network training. Based on this assumption, we design a cut-paste approach to augment the defect images by cutting out defects and pasting them on defect-free images. The defects are randomly transformed with scaling, rotating, and moving before the paste operation. To make the network training more efficient, we further propose an adversarial transformation algorithm that adjusts the pasted defects targeting the weakness of the classification network. The high diversity of the adversarial synthetic defect images forces the network to learn more discriminative category features. Experimental results show that our method can achieve comparable performance with recent fabric defect classification methods with only 1% fabric defect data on the ZJU-Leaper dataset. DefectTransfer also largely surpasses traditional augmentation methods even without manually annotated masks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助温言采纳,获得10
1秒前
1秒前
李健应助堃kun采纳,获得10
1秒前
化学学渣完成签到,获得积分10
2秒前
爱听歌的糖豆完成签到,获得积分10
2秒前
儒雅太君完成签到,获得积分10
2秒前
2秒前
HHM完成签到,获得积分10
2秒前
美啊美发布了新的文献求助30
3秒前
知行完成签到,获得积分10
3秒前
Shinichi发布了新的文献求助10
3秒前
caiia发布了新的文献求助10
3秒前
相濡以沫完成签到,获得积分10
3秒前
万泉部诗人完成签到,获得积分10
3秒前
JamesPei应助百里烬言采纳,获得10
3秒前
燕儿完成签到,获得积分10
4秒前
星河关注了科研通微信公众号
4秒前
武修洁发布了新的文献求助10
4秒前
4秒前
博修发布了新的文献求助10
5秒前
骆驼刺发布了新的文献求助10
5秒前
move完成签到 ,获得积分10
6秒前
yolodys完成签到,获得积分10
6秒前
dxz完成签到,获得积分10
6秒前
小马甲应助weirdo采纳,获得30
6秒前
悲凉的忆寒完成签到,获得积分20
6秒前
冰雨Flory完成签到,获得积分10
7秒前
烂漫含雁发布了新的文献求助10
7秒前
8秒前
naturehome完成签到,获得积分10
8秒前
木昜完成签到,获得积分10
9秒前
wanci应助HM采纳,获得10
9秒前
Rz发布了新的文献求助40
9秒前
10秒前
赘婿应助LYT采纳,获得10
10秒前
10秒前
10秒前
11秒前
iCloud完成签到,获得积分10
11秒前
隐形曼青应助博修采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792901
求助须知:如何正确求助?哪些是违规求助? 3337465
关于积分的说明 10285340
捐赠科研通 3054138
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561