A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation

计算机科学 兴趣点 人气 范畴变量 背景(考古学) 情报检索 推荐系统 点(几何) 数据挖掘 数据科学 人工智能 机器学习 地理 心理学 社会心理学 几何学 数学 考古
作者
Hossein A. Rahmani,Mohammad Aliannejadi,Mitra Baratchi,Fábio Crestani
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:40 (4): 1-35 被引量:12
标识
DOI:10.1145/3508478
摘要

As the popularity of Location-based Social Networks increases, designing accurate models for Point-of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by incorporating contextual information into previously designed recommendation algorithms. Some of the major contextual information that has been considered in POI recommendation are the location attributes (i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews, tips, and check-in made to the locations), and other information, such as the distance of the POI from user’s main activity location and the social tie between users. The right selection of such factors can significantly impact the performance of the POI recommendation. However, previous research does not consider the impact of the combination of these different factors. In this article, we propose different contextual models and analyze the fusion of different major contextual information in POI recommendation. The major contributions of this article are as follows: (i) providing an extensive survey of context-aware location recommendation; (ii) quantifying and analyzing the impact of different contextual information (e.g., social, temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and non-linear models, which can incorporate all the major contextual information into a single recommendation model; and (iii) evaluating the considered models using two well-known real-world datasets. Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
1111完成签到,获得积分10
4秒前
百地希留耶完成签到 ,获得积分10
4秒前
a焦发布了新的文献求助10
5秒前
最初的远方完成签到,获得积分10
6秒前
机智的友容完成签到,获得积分10
7秒前
7秒前
优秀的千柳完成签到,获得积分10
7秒前
开心白凝发布了新的文献求助30
9秒前
Hqing完成签到 ,获得积分10
10秒前
12秒前
宇宙最萌小猫咪完成签到 ,获得积分10
12秒前
有一套发布了新的文献求助10
15秒前
新手上路完成签到,获得积分10
16秒前
很酷的妞子完成签到 ,获得积分10
20秒前
深情安青应助缓慢平蓝采纳,获得10
21秒前
27秒前
humorlife完成签到,获得积分10
29秒前
29秒前
小蘑菇应助涨不停ing采纳,获得10
30秒前
ding应助蓁叶采纳,获得10
31秒前
科研通AI5应助爱听歌笑寒采纳,获得10
32秒前
微笑完成签到,获得积分10
34秒前
35秒前
fffff发布了新的文献求助10
35秒前
36秒前
UHPC发布了新的文献求助10
38秒前
专注的羽毛完成签到,获得积分10
40秒前
ww完成签到,获得积分10
41秒前
42秒前
45秒前
UHPC完成签到,获得积分10
45秒前
Vicky完成签到 ,获得积分10
46秒前
46秒前
abbb发布了新的文献求助10
46秒前
lbw完成签到 ,获得积分10
48秒前
fffff完成签到,获得积分10
49秒前
50秒前
51秒前
myg123完成签到 ,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535