Multiple Source Detection Based on Spatial Clustering and Its Applications on Wearable OPM-MEG

聚类分析 脑磁图 计算机科学 人工智能 模式识别(心理学) 粒子群优化 水准点(测量) 计算机视觉 算法 心理学 大地测量学 脑电图 精神科 地理
作者
Nan An,Fuzhi Cao,Wen Li,Wenli Wang,Weinan Xu,Chunhui Wang,Yang Gao,Min Xiang,Xiaolin Ning
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (10): 3131-3141 被引量:13
标识
DOI:10.1109/tbme.2022.3161830
摘要

Magnetoencephalography (MEG) is a non-invasive technique that measures the magnetic fields of brain activity. In particular, a new type of optically pumped magnetometer (OPM)-based wearable MEG system has been developed in recent years. Source localization in MEG can provide signals and locations of brain activity. However, conventional source localization methods face the difficulty of accurately estimating multiple sources. The present study presented a new parametric method to estimate the number of sources and localize multiple sources. In addition, we applied the proposed method to a constructed wearable OPM-MEG system.We used spatial clustering of the dipole spatial distribution to detect sources. The spatial distribution of dipoles was obtained by segmenting the MEG data temporally into slices and then estimating the parameters of the dipoles on each data slice using the particle swarm optimization algorithm. Spatial clustering was performed using the spatial-temporal density-based spatial clustering of applications with a noise algorithm. The performance of our approach for detecting multiple sources was compared with that of four typical benchmark algorithms using the OPM-MEG sensor configuration.The simulation results showed that the proposed method had the best performance for detecting multiple sources. Moreover, the effectiveness of the method was verified by a multimodel sensory stimuli experiment on a real constructed 31-channel OPM-MEG.Our study provides an effective method for the detection of multiple sources.With the improvement of the source localization methods, MEG may have a wider range of applications in neuroscience and clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到 ,获得积分10
刚刚
CipherSage应助淡淡的大雁采纳,获得10
3秒前
3秒前
问青山完成签到,获得积分10
3秒前
Meyako应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得20
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Meyako应助科研通管家采纳,获得10
3秒前
追寻电脑完成签到,获得积分20
5秒前
希希完成签到,获得积分10
7秒前
10秒前
ee完成签到,获得积分20
14秒前
谨慎的秋灵完成签到,获得积分10
15秒前
l1844852731完成签到,获得积分10
16秒前
稻草人完成签到 ,获得积分10
20秒前
22秒前
赘婿应助喜悦的曼彤采纳,获得10
22秒前
22秒前
ephore应助Callmeteji采纳,获得30
24秒前
25秒前
称心采枫完成签到 ,获得积分0
26秒前
27秒前
sddfafd发布了新的文献求助10
28秒前
刚睡醒完成签到,获得积分10
29秒前
时光轴发布了新的文献求助10
29秒前
zhenglei9058发布了新的文献求助10
30秒前
30秒前
wefun完成签到,获得积分10
31秒前
文茵发布了新的文献求助10
31秒前
愿好完成签到,获得积分10
31秒前
浮游应助加油小白菜采纳,获得10
32秒前
向日繁花发布了新的文献求助10
36秒前
39秒前
加油小白菜完成签到,获得积分10
40秒前
科研通AI5应助时光轴采纳,获得10
41秒前
41秒前
科研通AI5应助惕守采纳,获得10
45秒前
喜悦发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 500
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4796809
求助须知:如何正确求助?哪些是违规求助? 4116878
关于积分的说明 12736337
捐赠科研通 3846842
什么是DOI,文献DOI怎么找? 2119886
邀请新用户注册赠送积分活动 1141983
关于科研通互助平台的介绍 1031472