Deciphering the Role of Amine Concentration on Polyamide Formation toward Enhanced RO Performance

聚酰胺 胺气处理 化学 化学工程
作者
Lu Elfa Peng,Qimao Gan,Zhe Yang,Li Wang,Pengfei Sun,Hao Guo,Hee-Deung Park,Chuyang Y. Tang
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:2 (5): 903-912 被引量:22
标识
DOI:10.1021/acsestengg.1c00418
摘要

Polyamide surface morphology and its underneath nanosized voids have crucial influence on the separation performance of thin film composite (TFC) polyamide reverse osmosis membranes. Although there have been numerous studies reporting the impact of amine monomer concentration on polyamide formation and membrane performance, the observations and interpretations in the existing literature remain controversial. In this study, we performed interfacial polymerization (IP) of polyamide films over a wide range of m-phenylenediamine (MPD) concentration (0.05–8.0 w/w %). For the first time, we demonstrate that the water permeance of the resultant TFC membranes is governed by the competing effects of (1) promoted polyamide film growth for forming thicker polyamide films and (2) improved nanofoaming effect that results in more extensive nanovoids at higher MPD concentrations. To dissect these competing mechanisms, we further adopted a free-interface IP strategy to suppress the nanofoaming effect. The corresponding polyamide nanofilms had negligible nanovoids and monotonously increased film thickness, leading to decreased water permeance at high MPD concentrations. In contrast, the conventional TFC membranes exhibited optimal water permeance at the intermediate MPD concentration of 2.0 w/w %, which results from the trade-off between improved nanovoid formation (which promotes higher permeance) and increased film growth (which limits permeance). On the other hand, the better film growth at greater MPD concentration was generally beneficial for achieving better membrane rejection. The current study unveils the fundamental chemistry–morphology–performance relationship of TFC polyamide membranes and provides important implications on their synthesis and environmental applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjx发布了新的文献求助10
刚刚
ania完成签到,获得积分10
刚刚
hxy完成签到 ,获得积分10
1秒前
shinysparrow应助呜呼啦呼采纳,获得10
1秒前
笨笨的雅阳完成签到,获得积分10
2秒前
共享精神应助药学僧采纳,获得10
5秒前
默11完成签到 ,获得积分10
5秒前
benben应助阳洋洋采纳,获得10
6秒前
董云云完成签到,获得积分10
7秒前
8秒前
迷路问夏完成签到,获得积分10
8秒前
9秒前
benxiaohai发布了新的文献求助10
12秒前
白问寒发布了新的文献求助10
13秒前
FOX完成签到,获得积分10
14秒前
英俊的铭应助呜呼啦呼采纳,获得10
16秒前
16秒前
虾滑完成签到,获得积分10
17秒前
Owen应助称心怀莲采纳,获得10
17秒前
17秒前
端庄的白开水完成签到,获得积分10
17秒前
斯文败类应助greedlh采纳,获得10
18秒前
如意小土豆完成签到,获得积分10
19秒前
20秒前
20秒前
tt发布了新的文献求助10
20秒前
24秒前
zp发布了新的文献求助10
25秒前
领导范儿应助ZIS采纳,获得10
26秒前
王王发布了新的文献求助10
26秒前
执着的水杯完成签到,获得积分10
27秒前
28秒前
30秒前
30秒前
31秒前
31秒前
月神发布了新的文献求助10
32秒前
32秒前
陶醉的蜜蜂完成签到,获得积分10
32秒前
33秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Comparative Rhetoric: A[n] Historical and Cross-Cultural Introduction 500
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 300
Transformerboard III 300
Natur im Sinn 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2359044
求助须知:如何正确求助?哪些是违规求助? 2066310
关于积分的说明 5160645
捐赠科研通 1795313
什么是DOI,文献DOI怎么找? 896637
版权声明 557615
科研通“疑难数据库(出版商)”最低求助积分说明 478609