已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review of Pareto pruning methods for multi-objective optimization

帕累托原理 修剪 多目标优化 计算机科学 数学优化 数学 生物 植物
作者
Sanyapong Petchrompo,David W. Coit,Alexandra Brintrup,Anupong Wannakrairot,Ajith Kumar Parlikad
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:167: 108022-108022 被引量:161
标识
DOI:10.1016/j.cie.2022.108022
摘要

• Novel classification of multi-objective optimization methods. • Subclassifcation of Pareto pruning methods according to the pruning instruction. • A review of performance indicators for the pruned Pareto set. • Comparative analyses across different multi-objective optimization classes. • Insights into current trends and potential research areas for Pareto pruning methods. Previous researchers have made impressive strides in developing algorithms and solution methodologies to address multi-objective optimization (MOO) problems in industrial engineering and associated fields. One traditional approach is to determine a Pareto optimal set that represents the trade-off between objectives. However, this approach could result in an extremely large set of solutions, making it difficult for the decision maker to identify the most promising solutions from the Pareto front. To deal with this issue, later contributors proposed alternative approaches that can autonomously draw up a shortlist of Pareto optimal solutions so that the results are more comprehensible to the decision maker. These alternative approaches are referred to as the pruning method in this review. The selection of the representative solutions in the pruning method is based on a predefined instruction, and its resolution process is mostly independent of the decision maker. To systematize studies on this aspect, we first provide the definitions of the pruning method and related terms; then, we establish a new classification of MOO methods to distinguish the pruning method from the a priori , a posteriori , and interactive methods. To facilitate readers in identifying a method that suits their interests, we further classify the pruning method by the instruction on how the representative solutions are selected, namely into the preference-based, diversity-based, efficiency-based, and problem specific methods. Ultimately, the comparative analysis of the pruning method and other MOO approaches allows us to provide insights into the current trends in the field and offer recommendations on potential research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
5秒前
Liangwudi发布了新的文献求助10
5秒前
地震学牛马完成签到,获得积分10
5秒前
LIU发布了新的文献求助10
6秒前
6秒前
6秒前
sansan完成签到,获得积分10
7秒前
无花果应助wwwwyt采纳,获得10
8秒前
8秒前
可乐发布了新的文献求助10
10秒前
10秒前
Candy2024完成签到 ,获得积分10
10秒前
研友_08oa3n完成签到,获得积分10
10秒前
H.D. M发布了新的文献求助10
11秒前
abab完成签到 ,获得积分10
13秒前
郑哲楷完成签到,获得积分10
13秒前
赘婿应助啦啦啦采纳,获得10
13秒前
田様应助肥逗采纳,获得10
14秒前
寻道图强应助ZXD1989采纳,获得50
16秒前
月亮发布了新的文献求助20
16秒前
bkagyin应助超人也读博采纳,获得10
17秒前
小球完成签到 ,获得积分10
17秒前
17秒前
19秒前
Frank应助Azaspiro采纳,获得10
19秒前
19秒前
20秒前
20秒前
烂漫人达完成签到 ,获得积分10
20秒前
20秒前
Jiali完成签到,获得积分10
20秒前
XING完成签到 ,获得积分10
20秒前
21秒前
23秒前
功必扬发布了新的文献求助20
23秒前
yffffff发布了新的文献求助10
23秒前
墨尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950