Image Inpainting With Local and Global Refinement

修补 计算机科学 编码器 人工智能 感受野 深度学习 领域(数学) 计算机视觉 填写 像素 过程(计算) 图像(数学) 模式识别(心理学) 数学 操作系统 纯数学
作者
Weize Quan,Ruisong Zhang,Yong Zhang,Zhifeng Li,Jue Wang,Dong‐Ming Yan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2405-2420 被引量:114
标识
DOI:10.1109/tip.2022.3152624
摘要

Image inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e., larger than the image resolution. The receptive field refers to the set of input pixels that are path-connected to a neuron. For image inpainting task, however, the size of surrounding areas needed to repair different kinds of missing regions are different, and the very large receptive field is not always optimal, especially for the local structures and textures. In addition, a large receptive field tends to involve more undesired completion results, which will disturb the inpainting process. Based on these insights, we rethink the process of image inpainting from a different perspective of receptive field, and propose a novel three-stage inpainting framework with local and global refinement. Specifically, we first utilize an encoder-decoder network with skip connection to achieve coarse initial results. Then, we introduce a shallow deep model with small receptive field to conduct the local refinement, which can also weaken the influence of distant undesired completion results. Finally, we propose an attention-based encoder-decoder network with large receptive field to conduct the global refinement. Experimental results demonstrate that our method outperforms the state of the arts on three popular publicly available datasets for image inpainting. Our local and global refinement network can be directly inserted into the end of any existing networks to further improve their inpainting performance. Code is available at https://github.com/weizequan/LGNet.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
永远喜欢一点点完成签到,获得积分10
1秒前
Doctor_Guoyu完成签到,获得积分20
1秒前
3秒前
3秒前
独特纸飞机完成签到 ,获得积分10
4秒前
小魏哥完成签到,获得积分10
4秒前
4秒前
supersunshine完成签到,获得积分10
5秒前
苏梗完成签到 ,获得积分10
5秒前
yidashi完成签到,获得积分10
5秒前
叶子发布了新的文献求助10
5秒前
燕子发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
开庆完成签到,获得积分10
11秒前
小太阳完成签到,获得积分10
12秒前
fishswim1完成签到,获得积分10
12秒前
zhhyya发布了新的文献求助10
13秒前
aaaa发布了新的文献求助10
14秒前
劉浏琉应助燕子采纳,获得10
16秒前
16秒前
叶子完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
无花果应助陈文学采纳,获得10
19秒前
tszjw168完成签到 ,获得积分0
19秒前
jin完成签到,获得积分10
20秒前
Z_Z完成签到,获得积分10
20秒前
最美好的祝福完成签到,获得积分10
23秒前
23秒前
彩色完成签到,获得积分10
24秒前
jsieuh完成签到 ,获得积分10
24秒前
wangmengcheng完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
bhkwxdxy发布了新的文献求助10
29秒前
英俊的馒头完成签到,获得积分10
29秒前
29秒前
30秒前
Liuyan应助科研通管家采纳,获得10
30秒前
昵称应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796494
求助须知:如何正确求助?哪些是违规求助? 5777499
关于积分的说明 15492065
捐赠科研通 4923524
什么是DOI,文献DOI怎么找? 2650371
邀请新用户注册赠送积分活动 1597634
关于科研通互助平台的介绍 1552272