Image Inpainting With Local and Global Refinement

修补 计算机科学 编码器 人工智能 感受野 深度学习 领域(数学) 计算机视觉 填写 像素 过程(计算) 图像(数学) 模式识别(心理学) 数学 纯数学 操作系统
作者
Weize Quan,Ruisong Zhang,Yong Zhang,Zhifeng Li,Jue Wang,Dong‐Ming Yan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2405-2420 被引量:84
标识
DOI:10.1109/tip.2022.3152624
摘要

Image inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e., larger than the image resolution. The receptive field refers to the set of input pixels that are path-connected to a neuron. For image inpainting task, however, the size of surrounding areas needed to repair different kinds of missing regions are different, and the very large receptive field is not always optimal, especially for the local structures and textures. In addition, a large receptive field tends to involve more undesired completion results, which will disturb the inpainting process. Based on these insights, we rethink the process of image inpainting from a different perspective of receptive field, and propose a novel three-stage inpainting framework with local and global refinement. Specifically, we first utilize an encoder-decoder network with skip connection to achieve coarse initial results. Then, we introduce a shallow deep model with small receptive field to conduct the local refinement, which can also weaken the influence of distant undesired completion results. Finally, we propose an attention-based encoder-decoder network with large receptive field to conduct the global refinement. Experimental results demonstrate that our method outperforms the state of the arts on three popular publicly available datasets for image inpainting. Our local and global refinement network can be directly inserted into the end of any existing networks to further improve their inpainting performance. Code is available at https://github.com/weizequan/LGNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
4秒前
TheSilencer完成签到 ,获得积分10
6秒前
风趣尔琴发布了新的文献求助10
8秒前
dennisysz发布了新的文献求助10
8秒前
9秒前
失眠采白完成签到,获得积分10
9秒前
Wenfei_zhang发布了新的文献求助10
10秒前
11秒前
宇航完成签到,获得积分10
13秒前
打打应助风趣尔琴采纳,获得10
13秒前
星夜发布了新的文献求助10
16秒前
英姑应助美好斓采纳,获得10
17秒前
17秒前
张.发布了新的文献求助10
18秒前
刻苦的秋柔完成签到,获得积分10
21秒前
十七完成签到 ,获得积分10
21秒前
佰斯特威应助wonder123采纳,获得10
25秒前
25秒前
26秒前
26秒前
小学猹完成签到,获得积分10
27秒前
30秒前
31秒前
yydidi发布了新的文献求助30
32秒前
TTT完成签到,获得积分10
32秒前
大喜子完成签到,获得积分20
34秒前
35秒前
玄妙发布了新的文献求助10
36秒前
听风飘逸发布了新的文献求助10
36秒前
慕青应助星夜采纳,获得10
37秒前
瘦瘦冰枫完成签到,获得积分10
38秒前
斑其发布了新的文献求助10
39秒前
39秒前
mia005应助kento采纳,获得50
40秒前
40秒前
40秒前
42秒前
晴心发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133