EMS-GCN: An End-to-End Mixhop Superpixel-Based Graph Convolutional Network for Hyperspectral Image Classification

人工智能 计算机科学 模式识别(心理学) 高光谱成像 像素 图形 卷积神经网络 预处理器 特征提取 分割 理论计算机科学
作者
Hongyan Zhang,Jiaqi Zou,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:43
标识
DOI:10.1109/tgrs.2022.3163326
摘要

The lack of labels is one of the major challenges in hyperspectral image (HSI) classification. Widely used Deep Learning (DL) models such as convolutional neural networks (CNNs) experience serious performance degradation when training samples are limited. In contrast, graph convolutional networks (GCNs) can simultaneously exploit the insufficient labeled data and massive unlabeled data of HSI in a semisupervised learning fashion. However, in order to reduce computational cost and mitigate noise, existing GCN-based classification methods usually perform superpixel segmentation as a preprocessing step and implement feature extraction as well as node classification on the predefined superpixel graph, where one superpixel might incorporate pixels with different labels. Moreover, the local spectral–spatial information within superpixels is generally ignored. To alleviate these two issues, we propose an end-to-end mixhop superpixel-based GCN (EMS-GCN) framework for HSI classification. Specifically, we first introduce the differentiable superpixel segmentation algorithm to map the pixel representations into a superpixel feature space, which allows refining the superpixel boundary with the training of the network. After that, a superpixel graph is constructed and fed into a novel mixhop superpixel-based GCN, where both the local information within superpixels and long-range information among superpixels are extracted, while the structure of the superpixel graph is updated at the same time. Finally, the enhanced superpixel representations are mapped back into a pixel feature space to conduct pixel-wise classification. Extensive experiments demonstrate the effectiveness of the proposed EMS-GCN method compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捡贝壳给捡贝壳的求助进行了留言
刚刚
2秒前
云泥发布了新的文献求助10
3秒前
zhuminghui发布了新的文献求助10
4秒前
5秒前
Hermit完成签到,获得积分10
6秒前
6秒前
虚心念桃发布了新的文献求助30
7秒前
67发布了新的文献求助10
11秒前
黑妖发布了新的文献求助10
12秒前
CipherSage应助溶胶采纳,获得10
13秒前
lki完成签到,获得积分10
13秒前
脑洞疼应助虚心念桃采纳,获得10
16秒前
科研通AI5应助光亮向雁采纳,获得10
18秒前
若雨凌风应助jia采纳,获得10
21秒前
黑妖完成签到,获得积分10
22秒前
薛薛完成签到,获得积分10
22秒前
科研通AI5应助甜豆包采纳,获得10
23秒前
24秒前
元宵宵发布了新的文献求助20
25秒前
28秒前
乐乐应助67采纳,获得10
30秒前
32秒前
科研通AI5应助你帅你有理采纳,获得30
33秒前
光亮向雁发布了新的文献求助10
33秒前
liyingbo发布了新的文献求助10
35秒前
37秒前
科研通AI5应助Yi采纳,获得10
37秒前
雪白的化蛹完成签到 ,获得积分10
38秒前
39秒前
木木三发布了新的文献求助20
39秒前
大模型应助王翔采纳,获得10
40秒前
彭于晏应助地三鲜采纳,获得10
41秒前
科研通AI5应助医学小王采纳,获得10
44秒前
45秒前
朝颜完成签到,获得积分10
46秒前
大坚果发布了新的文献求助20
48秒前
49秒前
49秒前
默默发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921