Random neighbor elite guided differential evolution for global numerical optimization

突变 人口 差异进化 k-最近邻算法 计算机科学 电流(流体) 数学优化 利用 局部最优 选择(遗传算法) 算法 数学 人工智能 工程类 生物 遗传学 人口学 计算机安全 社会学 基因 电气工程
作者
Qiang Yang,Jia-Qi Yan,Xu-Dong Gao,Dong-Dong Xu,Zhen-Yu Lu,Jun Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:607: 1408-1438 被引量:2
标识
DOI:10.1016/j.ins.2022.06.029
摘要

• A novel random neighbor elite guided mutation strategy named “DE/current-to-rnbest/1”, which is a general mutation framework. • Random neighbor region formed by several random individuals in the population. • Two special cases of “DE/current-to-rnbest/1”: “DE/current-to-best/1” and “DE/current-to-pbest/1” • Adaptive neighbor size adjustment at the individual level based on the Cauchy distribution . • Exploring and exploiting the solution space appropriately to find global optima. Optimization problems not only become more and more ubiquitous in various fields, but also become more and more difficult to optimize nowadays, which seriously challenge the effectiveness of existing optimizers like different evolution (DE). To effectively solve this kind of problems, this paper proposes a random neighbor elite guided differential evolution (RNEGDE) algorithm. Specifically, to let individuals explore and exploit the solution space properly, a novel random neighbor elite guided mutation strategy named “DE/current-to-rnbest/1” is first proposed to mutate individuals. In this mutation strategy, several individuals randomly selected from the population for each individual to be updated along with the individual itself form a neighbor region, and then the best one in such a region is adopted as the guiding exemplar to mutate the individual. Due to the random selection of neighbors and the directional guidance of elites, this strategy is expected to direct individuals to promising areas fast without serious loss of diversity. Notably, it is found that two popular mutation strategies, namely “DE/current-to-best/1” and “DE/current-to-pbest/1”, are two special cases of the proposed “DE/current-to-rnbest/1”. Further, to alleviate the sensitivity of the proposed algorithm to the involved parameters, this paper utilizes the Gaussian distribution and the Cauchy distribution to adaptively generate parameter values for each individual with the mean value of the Gaussian distribution and the position value of the Cauchy distribution adaptively adjusted based on the evolutionary information of the population. With the above two techniques, the proposed algorithm is expected to effectively search the solution space. At last, extensive experiments conducted on one widely used benchmark function set with three different dimension sizes demonstrate that the proposed algorithm achieves highly competitive or even much better performance than several compared state-of-the-art peer methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ完成签到 ,获得积分20
2秒前
余志浩完成签到,获得积分10
2秒前
神勇的紫安完成签到 ,获得积分10
2秒前
4秒前
5秒前
6秒前
6秒前
酷波er应助hhhhh采纳,获得10
6秒前
nico完成签到,获得积分10
7秒前
9秒前
9秒前
11秒前
圆圆完成签到,获得积分10
12秒前
幽默不愁发布了新的文献求助10
13秒前
Kirin完成签到,获得积分10
13秒前
14秒前
满鑫完成签到,获得积分10
14秒前
15秒前
16秒前
云澈完成签到,获得积分10
17秒前
zz发布了新的文献求助10
17秒前
anna1992完成签到 ,获得积分10
17秒前
20秒前
狂野的尔白完成签到,获得积分20
21秒前
qqqq发布了新的文献求助10
21秒前
Steven发布了新的文献求助10
21秒前
c123发布了新的文献求助10
22秒前
23秒前
DDT完成签到,获得积分10
23秒前
24秒前
神勇代荷完成签到,获得积分10
24秒前
舒适的丹雪完成签到,获得积分10
25秒前
26秒前
26秒前
赵子骏发布了新的文献求助10
27秒前
科目三应助半夏采纳,获得10
28秒前
28秒前
圆圆发布了新的文献求助10
30秒前
橙子味的邱憨憨完成签到 ,获得积分10
30秒前
李健应助zn315315采纳,获得10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801630
求助须知:如何正确求助?哪些是违规求助? 3347454
关于积分的说明 10333663
捐赠科研通 3063605
什么是DOI,文献DOI怎么找? 1681955
邀请新用户注册赠送积分活动 807820
科研通“疑难数据库(出版商)”最低求助积分说明 763921