亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma

医学 腺癌 放射科 淋巴血管侵犯 优势比 内科学 比例危险模型 肺腺癌 回顾性队列研究 旁侵犯 肿瘤科 转移 癌症
作者
Ju Gang Nam,Samina Park,Chang Min Park,Yoon Kyung Jeon,Doo Hyun Chung,Jin Mo Goo,Young Tae Kim,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 441-451 被引量:24
标识
DOI:10.1148/radiol.213262
摘要

Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To provide histopathologic evidence underpinning the DL survival prediction model and to demonstrate the feasibility of the model in identifying patients with histopathologic risk factors through unsupervised clustering and a series of regression analyses. Materials and Methods For this retrospective study, data from patients who underwent curative resection for lung adenocarcinoma without neoadjuvant therapy from January 2016 to September 2020 were collected from a tertiary care center. Seven histopathologic risk factors for the resected adenocarcinoma were documented: the aggressive adenocarcinoma subtype (cribriform, morular, solid, or micropapillary-predominant subtype); mediastinal nodal metastasis (pN2); presence of lymphatic, venous, and perineural invasion; visceral pleural invasion (VPI); and EGFR mutation status. Unsupervised clustering using 80 DL model–driven CT features was performed, and associations between the patient clusters and the histopathologic features were analyzed. Multivariable regression analyses were performed to investigate the added value of the DL model output to the semantic CT features (clinical T category and radiologic nodule type [ie, solid or subsolid]) for histopathologic associations. Results A total of 1667 patients (median age, 64 years [IQR, 57–71 years]; 975 women) were evaluated. Unsupervised patient clusters 3 and 4 were associated with all histopathologic risk factors (P < .01) except for EGFR mutation status (P = .30 for cluster 3). After multivariable adjustment, model output was associated with the aggressive adenocarcinoma subtype (odds ratio [OR], 1.03; 95% CI: 1.002, 1.05; P = .03), venous invasion (OR, 1.03; 95% CI: 1.004, 1.06; P = .02), and VPI (OR, 1.08; 95% CI: 1.06, 1.10; P < .001), independently of the semantic CT features. Conclusion The deep learning model extracted CT imaging surrogates for the histopathologic profiles of lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
lezbj99发布了新的文献求助10
10秒前
moodlunatic发布了新的文献求助20
44秒前
浮游应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
54秒前
domingo完成签到,获得积分10
55秒前
58秒前
1分钟前
lezbj99发布了新的文献求助10
1分钟前
科研通AI6应助moodlunatic采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1a完成签到 ,获得积分10
1分钟前
2分钟前
ding应助二硫碘化钾采纳,获得10
2分钟前
ding应助马潇涵采纳,获得10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZHH完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
我是老大应助废久采纳,获得10
3分钟前
lezbj99发布了新的文献求助10
3分钟前
4分钟前
lezbj99发布了新的文献求助10
4分钟前
4分钟前
moodlunatic发布了新的文献求助10
4分钟前
4分钟前
废久发布了新的文献求助10
4分钟前
moodlunatic完成签到,获得积分10
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522741
求助须知:如何正确求助?哪些是违规求助? 4613661
关于积分的说明 14539155
捐赠科研通 4551386
什么是DOI,文献DOI怎么找? 2494224
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542