亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Histopathologic Basis for a Chest CT Deep Learning Survival Prediction Model in Patients with Lung Adenocarcinoma

医学 腺癌 放射科 淋巴血管侵犯 优势比 内科学 比例危险模型 肺腺癌 回顾性队列研究 旁侵犯 肿瘤科 转移 癌症
作者
Ju Gang Nam,Samina Park,Chang Min Park,Yoon Kyung Jeon,Doo Hyun Chung,Jin Mo Goo,Young Tae Kim,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (2): 441-451 被引量:22
标识
DOI:10.1148/radiol.213262
摘要

Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To provide histopathologic evidence underpinning the DL survival prediction model and to demonstrate the feasibility of the model in identifying patients with histopathologic risk factors through unsupervised clustering and a series of regression analyses. Materials and Methods For this retrospective study, data from patients who underwent curative resection for lung adenocarcinoma without neoadjuvant therapy from January 2016 to September 2020 were collected from a tertiary care center. Seven histopathologic risk factors for the resected adenocarcinoma were documented: the aggressive adenocarcinoma subtype (cribriform, morular, solid, or micropapillary-predominant subtype); mediastinal nodal metastasis (pN2); presence of lymphatic, venous, and perineural invasion; visceral pleural invasion (VPI); and EGFR mutation status. Unsupervised clustering using 80 DL model–driven CT features was performed, and associations between the patient clusters and the histopathologic features were analyzed. Multivariable regression analyses were performed to investigate the added value of the DL model output to the semantic CT features (clinical T category and radiologic nodule type [ie, solid or subsolid]) for histopathologic associations. Results A total of 1667 patients (median age, 64 years [IQR, 57–71 years]; 975 women) were evaluated. Unsupervised patient clusters 3 and 4 were associated with all histopathologic risk factors (P < .01) except for EGFR mutation status (P = .30 for cluster 3). After multivariable adjustment, model output was associated with the aggressive adenocarcinoma subtype (odds ratio [OR], 1.03; 95% CI: 1.002, 1.05; P = .03), venous invasion (OR, 1.03; 95% CI: 1.004, 1.06; P = .02), and VPI (OR, 1.08; 95% CI: 1.06, 1.10; P < .001), independently of the semantic CT features. Conclusion The deep learning model extracted CT imaging surrogates for the histopathologic profiles of lung adenocarcinoma. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Yanagawa in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rebeccahu完成签到,获得积分10
17秒前
打打应助舒服的幼荷采纳,获得10
22秒前
charih完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
Lucas应助nebuscar采纳,获得10
3分钟前
zrs发布了新的文献求助10
3分钟前
龚文亮完成签到,获得积分10
4分钟前
月儿完成签到 ,获得积分10
5分钟前
zrs完成签到,获得积分10
6分钟前
6分钟前
非洲大象发布了新的文献求助10
6分钟前
非洲大象完成签到,获得积分10
6分钟前
7分钟前
希望天下0贩的0应助Una采纳,获得10
8分钟前
8分钟前
9分钟前
通科研完成签到 ,获得积分10
9分钟前
10分钟前
nebuscar发布了新的文献求助10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
在水一方应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
nebuscar关注了科研通微信公众号
11分钟前
11分钟前
完美世界应助科研通管家采纳,获得20
12分钟前
12分钟前
12分钟前
鲁成危发布了新的文献求助10
12分钟前
YifanWang完成签到,获得积分0
13分钟前
13分钟前
ZaZa完成签到,获得积分10
14分钟前
研友_850aeZ完成签到,获得积分0
14分钟前
14分钟前
zzzzzzzqy发布了新的文献求助10
14分钟前
14分钟前
ivyjianjie完成签到,获得积分10
15分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906859
求助须知:如何正确求助?哪些是违规求助? 3452364
关于积分的说明 10870150
捐赠科研通 3178227
什么是DOI,文献DOI怎么找? 1755828
邀请新用户注册赠送积分活动 849100
科研通“疑难数据库(出版商)”最低求助积分说明 791370