Robust Image Forgery Detection Against Transmission Over Online Social Networks

计算机科学 稳健性(进化) 有损压缩 噪音(视频) 探测器 人工智能 图像(数学) 证书 计算机安全 数据挖掘 机器学习 理论计算机科学 电信 生物化学 基因 化学
作者
Haiwei Wu,Jiantao Zhou,Jinyu Tian,Jun Liu,Yu Qiao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 443-456 被引量:78
标识
DOI:10.1109/tifs.2022.3144878
摘要

The increasing abuse of image editing software causes the authenticity of digital images questionable. Meanwhile, the widespread availability of online social networks (OSNs) makes them the dominant channels for transmitting forged images to report fake news, propagate rumors, etc. Unfortunately, various lossy operations, e.g., compression and resizing, adopted by OSNs impose great challenges for implementing the robust image forgery detection. To fight against the OSN-shared forgeries, in this work, a novel robust training scheme is proposed. Firstly, we design a baseline detector, which won the top ranking in a recent certificate forgery detection competition. Then we conduct a thorough analysis of the noise introduced by OSNs, and decouple it into two parts, i.e., predictable noise and unseen noise , which are modelled separately. The former simulates the noise introduced by the disclosed (known) operations of OSNs, while the latter is designed to not only complete the previous one, but also take into account the defects of the detector itself. We further incorporate the modelled noise into a robust training framework, significantly improving the robustness of the image forgery detector. Extensive experimental results are presented to validate the superiority of the proposed scheme compared with several state-of-the-art competitors, especially in the scenarios of detecting OSN-transmitted forgeries. Finally, to promote the future development of the image forgery detection, we build a public forgeries dataset based on four existing datasets through the uploading and downloading of four most popular OSNs. The data and code of this work are available at https://github.com/HighwayWu/ImageForensicsOSN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ashao发布了新的文献求助10
1秒前
canghong发布了新的文献求助10
1秒前
啥东西完成签到,获得积分10
1秒前
Mystic发布了新的文献求助10
2秒前
李爱国应助33A2D17采纳,获得10
2秒前
坐标完成签到,获得积分10
3秒前
crazy完成签到,获得积分10
4秒前
123完成签到,获得积分10
4秒前
清晨发布了新的文献求助10
5秒前
向阳葵发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
WilsonT发布了新的文献求助10
10秒前
10秒前
赘婿应助33A2D17采纳,获得10
11秒前
ashao完成签到,获得积分10
11秒前
12秒前
zzl发布了新的文献求助10
13秒前
科研通AI5应助猪猪hero采纳,获得10
15秒前
细腻荔枝完成签到,获得积分10
15秒前
15秒前
赵鹏完成签到,获得积分10
16秒前
雨田发布了新的文献求助10
16秒前
168完成签到,获得积分10
17秒前
细腻荔枝发布了新的文献求助10
17秒前
科研通AI6应助斯人采纳,获得10
18秒前
1531215完成签到,获得积分10
19秒前
深情安青应助CompJIN采纳,获得10
19秒前
齐天大圣完成签到,获得积分10
19秒前
21秒前
852应助怕黑的老九采纳,获得10
22秒前
yqcj455发布了新的文献求助10
22秒前
23秒前
清晨关注了科研通微信公众号
23秒前
puyu发布了新的文献求助10
26秒前
thydf1完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4276896
求助须知:如何正确求助?哪些是违规求助? 3805688
关于积分的说明 11924301
捐赠科研通 3452416
什么是DOI,文献DOI怎么找? 1893445
邀请新用户注册赠送积分活动 943612
科研通“疑难数据库(出版商)”最低求助积分说明 847470