度量(数据仓库)
遍历理论
维数之咒
计算机科学
复杂网络
维数(图论)
背景(考古学)
关联维数
弹道
统计物理学
理论计算机科学
人工智能
数学
数据挖掘
物理
组合数学
分形维数
数学分析
万维网
古生物学
天文
生物
分形
作者
Lucas Lacasa,Jesús Gómez‐Gardeñes
标识
DOI:10.1103/physrevlett.110.168703
摘要
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.
科研通智能强力驱动
Strongly Powered by AbleSci AI