Predicting Structural Deterioration Condition of Individual Storm-Water Pipes Using Probabilistic Neural Networks and Multiple Logistic Regression Models

概率逻辑 逻辑回归 风暴 工程类 统计模型 人工神经网络 水管 样品(材料) 土木工程 环境科学 计算机科学 人工智能 机器学习 气象学 地理 机械工程 化学 色谱法 入口
作者
Huu Tran,B. J. C. Perera,A. W. M Ng
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:135 (6): 553-557 被引量:26
标识
DOI:10.1061/(asce)0733-9496(2009)135:6(553)
摘要

After several decades in service, the deterioration of storm-water pipe assets is inevitable. The deterioration of storm-water pipes is characterized by structural deterioration and hydraulic deterioration. Condition assessment using closed circuit television (CCTV) inspection is often carried out to assess the structural condition of pipes. However, the knowledge on the condition of storm-water pipe assets is still limited for strategic planning of maintenance and rehabilitation, because generally only a small sample is CCTV-inspected and in almost all cases, these pipes are inspected once only due to high costs. The challenge for researchers is to use the sample of CCTV-inspected pipes for developing mathematical models that can predict the structural condition of remaining pipes as well as the future condition of pipes. In this present study, the deterioration pattern of storm-water pipes is constructed on the basis that each pipe has its own deterioration rate due to its pipe factors. Based on this, two mathematical models using multiple logistic regression (MLR) and probabilistic neural networks (PNN) are developed for predicting the structural condition of individual pipes. The MLR model was calibrated using the maximum likelihood method and the PNN model was trained using a genetic algorithm (GA). The predictive performances of both models were compared using CCTV data collected for a local government authority in Melbourne, Australia. The results showed that the PNN model was more suited for modeling the structural deterioration of individual storm-water pipes than the MLR model. Furthermore, the use of GA improved the training results of the PNN model compared to the trial and error method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小徐发布了新的文献求助10
刚刚
瓷穹发布了新的文献求助10
1秒前
3秒前
liujingyi发布了新的文献求助10
4秒前
cdercder应助sue采纳,获得10
5秒前
李咕咕完成签到,获得积分10
5秒前
6秒前
6秒前
8秒前
liujingyi完成签到,获得积分20
10秒前
10秒前
风花雪月完成签到 ,获得积分10
11秒前
12秒前
华仔应助summer1z采纳,获得10
12秒前
13秒前
苗月月完成签到 ,获得积分20
13秒前
14秒前
盼盼完成签到 ,获得积分10
15秒前
健忘英姑应助隐形元龙采纳,获得20
16秒前
17秒前
完美世界应助瓷穹采纳,获得10
18秒前
19秒前
她与论文皆失完成签到,获得积分10
20秒前
汉堡包应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
wanci应助负责冰海采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
bc应助科研通管家采纳,获得30
21秒前
今后应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
27秒前
科研通AI5应助chen采纳,获得10
31秒前
所所应助墨尔根戴青采纳,获得10
31秒前
Tink完成签到,获得积分10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149