维纳滤波器
维纳反褶积
滤波器(信号处理)
失真(音乐)
计算机科学
自适应滤波器
降噪
噪音(视频)
估计员
语音识别
椒盐噪音
根升余弦滤波器
算法
核自适应滤波器
滤波器设计
数学
人工智能
中值滤波器
计算机视觉
统计
电信
盲反褶积
图像处理
反褶积
放大器
带宽(计算)
图像(数学)
标识
DOI:10.1109/icassp.2004.1325984
摘要
This paper describes a parametric Wiener filter designed for noise removal with low distortion of the speech signal. The classic Wiener filter is augmented with a proportional variable for noise estimation, and a floating floor variable for the transfer function. These two variables are adaptive to the estimated noise energy in parametric relations, determined experimentally for the corresponding noise estimator. The optimization of those parameters can enable the filter to achieve low distortion noise removal. Experiments using some office and home appliance noises have shown superior performance in comparison to the common Wiener filter and the spectral subtraction approaches. The proposed method has comparable quality but less computational demands than the psychoacoustically motivated Gustafsson filter. Because of low distortions, the filter may also be used in cascade with others to achieve better total performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI