Condensation on slippery asymmetric bumps

聚结(物理) 润湿 曲率 阻力 材料科学 纳米技术 曲率半径 半径 化学物理 机械 复合材料 化学 物理 几何学 计算机科学 数学 平均曲率 流量平均曲率 天体生物学 计算机安全
作者
Kyoo-Chul Park,Philseok Kim,Alison Grinthal,Neil He,David W. Fox,James C. Weaver,Joanna Aizenberg
出处
期刊:Nature [Nature Portfolio]
卷期号:531 (7592): 78-82 被引量:778
标识
DOI:10.1038/nature16956
摘要

Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be applied to a wide range of water-harvesting and phase-change heat-transfer applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
含蓄老黑发布了新的文献求助30
4秒前
华仔应助张泽翰采纳,获得10
7秒前
sarah发布了新的文献求助10
8秒前
11秒前
闾丘道天完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
星星发布了新的文献求助10
16秒前
阿网发布了新的文献求助10
17秒前
小二郎应助酷炫灵安采纳,获得10
17秒前
鱼会淹死吗完成签到,获得积分10
18秒前
18秒前
20秒前
喜悦发布了新的文献求助10
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
忘忧草应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
MchemG应助科研通管家采纳,获得30
22秒前
23秒前
zyc发布了新的文献求助10
23秒前
星星完成签到,获得积分20
26秒前
阿网完成签到,获得积分10
26秒前
26秒前
酷炫灵安发布了新的文献求助10
29秒前
zyc完成签到,获得积分10
29秒前
29秒前
30秒前
深情安青应助decimalpoint采纳,获得30
30秒前
蓝刺发布了新的文献求助10
32秒前
minyulu完成签到,获得积分10
33秒前
33秒前
张泽翰发布了新的文献求助10
33秒前
35秒前
123发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
39秒前
含蓄老黑完成签到,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863343
求助须知:如何正确求助?哪些是违规求助? 3405696
关于积分的说明 10646201
捐赠科研通 3129361
什么是DOI,文献DOI怎么找? 1725885
邀请新用户注册赠送积分活动 831265
科研通“疑难数据库(出版商)”最低求助积分说明 779732