A statistical explanation of MaxEnt for ecologists

生态学 地理 生物
作者
Jane Elith,Steven J. Phillips,Trevor Hastie,Miroslav Dudı́k,Yung En Chee,Colin J. Yates
出处
期刊:Diversity and Distributions [Wiley]
卷期号:17 (1): 43-57 被引量:5607
标识
DOI:10.1111/j.1472-4642.2010.00725.x
摘要

MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric888应助科研通管家采纳,获得100
刚刚
刚刚
1秒前
Eternity完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
英俊的铭应助HDrinnk采纳,获得10
1秒前
1秒前
Murphy应助科研通管家采纳,获得10
1秒前
cui完成签到,获得积分10
1秒前
luxian应助科研通管家采纳,获得20
1秒前
林谩发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
sq1997发布了新的文献求助10
4秒前
Mr.egg发布了新的文献求助10
6秒前
唱跳双c完成签到,获得积分10
6秒前
6秒前
完美世界应助玲月采纳,获得10
6秒前
英俊的铭应助Li采纳,获得10
9秒前
优秀完成签到,获得积分10
10秒前
lemon完成签到 ,获得积分10
11秒前
wss发布了新的文献求助10
11秒前
酷波er应助Mr.Latitude采纳,获得10
11秒前
我是站长才怪应助yusuf采纳,获得10
12秒前
12秒前
12秒前
今后应助完美问玉采纳,获得10
13秒前
13秒前
13秒前
13秒前
内向秋烟发布了新的文献求助10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861048
求助须知:如何正确求助?哪些是违规求助? 3403386
关于积分的说明 10635114
捐赠科研通 3126593
什么是DOI,文献DOI怎么找? 1724156
邀请新用户注册赠送积分活动 830363
科研通“疑难数据库(出版商)”最低求助积分说明 779103