Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection

情绪分类 情绪识别 计算机科学 人工智能 模式识别(心理学) 情感计算 悲伤 情绪检测 厌恶 面部识别系统 特征提取
作者
Mohammad Soleymani,Sadjad Asghari-Esfeden,Yun Fu,Maja Pantic
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 17-28 被引量:269
标识
DOI:10.1109/taffc.2015.2436926
摘要

Emotions are time varying affective phenomena that are elicited as a result of stimuli. Videos and movies in particular are made to elicit emotions in their audiences. Detecting the viewers’ emotions instantaneously can be used to find the emotional traces of videos. In this paper, we present our approach in instantaneously detecting the emotions of video viewers’ emotions from electroencephalogram (EEG) signals and facial expressions. A set of emotion inducing videos were shown to participants while their facial expressions and physiological responses were recorded. The expressed valence (negative to positive emotions) in the videos of participants’ faces were annotated by five annotators. The stimuli videos were also continuously annotated on valence and arousal dimensions. Long-short-term-memory recurrent neural networks (LSTM-RNN) and continuous conditional random fields (CCRF) were utilized in detecting emotions automatically and continuously. We found the results from facial expressions to be superior to the results from EEG signals. We analyzed the effect of the contamination of facial muscle activities on EEG signals and found that most of the emotionally valuable content in EEG features are as a result of this contamination. However, our statistical analysis showed that EEG signals still carry complementary information in presence of facial expressions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
waiting完成签到,获得积分10
2秒前
热苏打发布了新的文献求助30
3秒前
大方青应助Ethan采纳,获得10
5秒前
学业顺利完成签到,获得积分10
6秒前
LYL发布了新的文献求助10
6秒前
大模型应助默默的依凝采纳,获得10
6秒前
8秒前
8秒前
9秒前
9秒前
彭于晏应助宫晓丝采纳,获得10
10秒前
11秒前
搜集达人应助wy采纳,获得10
12秒前
小梁要加油完成签到,获得积分10
12秒前
小葡萄icon完成签到 ,获得积分10
12秒前
13秒前
13秒前
赘婿应助多多采纳,获得10
13秒前
KAJIKU发布了新的文献求助10
13秒前
22222发布了新的文献求助10
13秒前
13秒前
kingybc发布了新的文献求助10
14秒前
15秒前
曹文鹏发布了新的文献求助20
15秒前
Bethune完成签到,获得积分10
15秒前
默默幼南发布了新的文献求助10
16秒前
赫枫发布了新的文献求助10
16秒前
NexusExplorer应助ly采纳,获得200
17秒前
烟花应助zhangzf采纳,获得10
17秒前
17秒前
18秒前
SMLW发布了新的文献求助10
18秒前
小赵完成签到,获得积分10
18秒前
邮寄短诗发布了新的文献求助20
20秒前
20秒前
21秒前
22秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912996
求助须知:如何正确求助?哪些是违规求助? 3458330
关于积分的说明 10899834
捐赠科研通 3184701
什么是DOI,文献DOI怎么找? 1760415
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792734