已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of RNA binding sites in proteins from amino acid sequence

生物 核糖核酸 计算生物学 RNA结合蛋白 蛋白质测序 遗传学 肽序列 基因
作者
Michael Terribilini,Jae‐Hyung Lee,Changhui Yan,Robert L. Jernigan,Vasant Honavar,Drena Dobbs
出处
期刊:RNA [Cold Spring Harbor Laboratory Press]
卷期号:12 (8): 1450-1462 被引量:180
标识
DOI:10.1261/rna.2197306
摘要

RNA-protein interactions are vitally important in a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed a computational tool for predicting which amino acids of an RNA binding protein participate in RNA-protein interactions, using only the protein sequence as input. RNABindR was developed using machine learning on a validated nonredundant data set of interfaces from known RNA-protein complexes in the Protein Data Bank. It generates a classifier that captures primary sequence signals sufficient for predicting which amino acids in a given protein are located in the RNA-protein interface. In leave-one-out cross-validation experiments, RNABindR identifies interface residues with >85% overall accuracy. It can be calibrated by the user to obtain either high specificity or high sensitivity for interface residues. RNABindR, implementing a Naive Bayes classifier, performs as well as a more complex neural network classifier (to our knowledge, the only previously published sequence-based method for RNA binding site prediction) and offers the advantages of speed, simplicity and interpretability of results. RNABindR predictions on the human telomerase protein hTERT are in good agreement with experimental data. The availability of computational tools for predicting which residues in an RNA binding protein are likely to contact RNA should facilitate design of experiments to directly test RNA binding function and contribute to our understanding of the diversity, mechanisms, and regulation of RNA-protein complexes in biological systems. (RNABindR is available as a Web tool from http://bindr.gdcb.iastate.edu.).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cullen完成签到 ,获得积分20
刚刚
1秒前
2秒前
2秒前
3秒前
LT发布了新的文献求助10
3秒前
ZWS完成签到,获得积分10
3秒前
3秒前
5秒前
cyw发布了新的文献求助10
5秒前
5秒前
舒心星星完成签到,获得积分10
6秒前
ZWS发布了新的文献求助10
7秒前
jjdeng完成签到,获得积分10
7秒前
天天快乐应助yangxin采纳,获得10
7秒前
烨笙完成签到 ,获得积分10
8秒前
8秒前
Yule发布了新的文献求助30
8秒前
toutou应助科研通管家采纳,获得10
8秒前
qifei应助科研通管家采纳,获得20
9秒前
CCC应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
热心芷雪应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
大宝君应助科研通管家采纳,获得20
9秒前
轨迹应助科研通管家采纳,获得70
9秒前
YifanWang应助科研通管家采纳,获得10
9秒前
传奇3应助荷花采纳,获得10
10秒前
小怪兽完成签到 ,获得积分10
11秒前
14秒前
科研通AI6.1应助29采纳,获得10
14秒前
生动芷完成签到,获得积分10
16秒前
Hello应助Yule采纳,获得30
16秒前
梁政研完成签到 ,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938