清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning and Statistical Analysis for Materials Science: Stability and Transferability of Fingerprint Descriptors and Chemical Insights

计算机科学 人工智能 人工神经网络 机器学习 理论(学习稳定性) 聚类分析 工作流程 功能(生物学) 数据挖掘 数据库 进化生物学 生物
作者
Praveen Pankajakshan,Suchismita Sanyal,Onno E. de Noord,Indranil Bhattacharya,Arnab Bhattacharyya,Umesh V. Waghmare
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:29 (10): 4190-4201 被引量:79
标识
DOI:10.1021/acs.chemmater.6b04229
摘要

In the paradigm of virtual high-throughput screening for materials, we have developed a semiautomated workflow or "recipe" that can help a material scientist to start from a raw data set of materials with their properties and descriptors, build predictive models, and draw insights into the governing mechanism. We demonstrate our recipe, which employs machine learning tools and statistical analysis, through application to a case study leading to identification of descriptors relevant to catalysts for CO2 electroreduction, starting from a published database of 298 catalyst alloys. At the heart of our methodology lies the Bootstrapped Projected Gradient Descent (BoPGD) algorithm, which has significant advantages over commonly used machine learning (ML) and statistical analysis (SA) tools such as the regression coefficient shrinkage-based method (LASSO) or artificial neural networks: (a) it selects descriptors with greater stability and transferability, with a goal to understand the chemical mechanism rather than fitting data, and (b) while being effective for smaller data sets such as in the test case, it employs clustering of descriptors to scale far more efficiently to large size of descriptor sets in terms of computational speed. In addition to identifying the descriptors that parametrize the d-band model of catalysts for CO2 reduction, we predict work function to be an essential and relevant descriptor. Based on this result, we propose a modification of the d-band model that includes the chemical effect of work function, and show that the resulting predictive model gives the binding energy of CO to catalyst fairly accurately. Since our scheme is general and particularly efficient in reducing a set of large number of descriptors to a minimal one, we expect it to be a versatile tool in obtaining chemical insights into complex phenomena and development of predictive models for design of materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
小二郎应助xue采纳,获得10
36秒前
woxinyouyou完成签到,获得积分0
38秒前
45秒前
量子星尘发布了新的文献求助10
53秒前
1分钟前
1分钟前
苏信怜完成签到,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
nini完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
情怀应助研友_拓跋戾采纳,获得10
3分钟前
3分钟前
紫熊完成签到,获得积分10
4分钟前
云雨完成签到 ,获得积分10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
4分钟前
Micheallee完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
微卫星不稳定完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Muran完成签到,获得积分0
5分钟前
wuju完成签到,获得积分10
5分钟前
MMMMM应助科研通管家采纳,获得30
5分钟前
MMMMM应助科研通管家采纳,获得20
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
柯伊达完成签到 ,获得积分10
6分钟前
超级热女士完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助30
7分钟前
科研通AI6应助萌大叔采纳,获得200
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270418
求助须知:如何正确求助?哪些是违规求助? 3800870
关于积分的说明 11910965
捐赠科研通 3447741
什么是DOI,文献DOI怎么找? 1891032
邀请新用户注册赠送积分活动 941779
科研通“疑难数据库(出版商)”最低求助积分说明 845903