Severity Prediction of Traffic Accident Using an Artificial Neural Network

计算机科学 人工神经网络 分类器(UML) 人工智能 数据挖掘 训练集 机器学习 聚类分析 数据预处理
作者
Sharaf AlKheder,Madhar Taamneh,Salah Taamneh
出处
期刊:Journal of Forecasting [Wiley]
卷期号:36 (1): 100-108 被引量:187
标识
DOI:10.1002/for.2425
摘要

Abstract In this paper, an artificial neural network (ANN) was used to predict the injury severity of traffic accidents based on 5973 traffic accident records occurred in Abu Dhabi over a 6‐year period (from 2008 to 2013). For each accident record, 48 different attributes had been collected at the time of the accident. After data preprocessing, the data were reduced to 16 attributes and four injury severity classes. In this study, WEKA (Waikato Environment for Knowledge Analysis) data‐mining software was used to build the ANN classifier. The traffic accident data were used to build two classifiers in two different ways. The whole data set were used for training and validating the first classifier (training set), while 90% of the data were used for training the second classifier and the remaining 10% were used for testing it (testing set). The experimental results revealed that the developed ANN classifiers can predict accident severity with reasonable accuracy. The overall model prediction performance for the training and testing data were 81.6% and 74.6%, respectively. To improve the prediction accuracy of the ANN classifier, traffic accident data were split into three clusters using a k ‐means algorithm. The results after clustering revealed significant improvement in the prediction accuracy of the ANN classifier, especially for the training dataset. In this work, and in order to validate the performance of the ANN model, an ordered probit model was also used as a comparative benchmark. The dependent variable (i.e. degree of injury) was transformed from ordinal to numerical (1, 2, 3, 4) for (minor, moderate, sever, death). The R tool was used to perform an ordered probit. For each accident, the ordered probit model showed how likely this accident would result in each class (minor, moderate, severe, death). The accuracy of 59.5% obtained from the ordered probit model was clearly less than the ANN accuracy value of 74.6%. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Soir发布了新的文献求助10
2秒前
2秒前
共享精神应助ch采纳,获得10
3秒前
yyh12138完成签到,获得积分20
3秒前
铁柱xh完成签到 ,获得积分10
5秒前
yyh12138发布了新的文献求助10
6秒前
神明发布了新的文献求助200
6秒前
ccc完成签到,获得积分10
7秒前
Psy发布了新的文献求助50
8秒前
xuan2022完成签到,获得积分10
9秒前
坚强白玉完成签到,获得积分10
12秒前
我不完成签到,获得积分10
14秒前
19秒前
pluto应助会飞的史迪奇采纳,获得20
21秒前
大模型应助神明采纳,获得10
21秒前
pluto应助王文静采纳,获得50
22秒前
阳光彩虹小白马完成签到 ,获得积分10
22秒前
basepair发布了新的文献求助10
24秒前
情怀应助Shining_Wu采纳,获得10
25秒前
25秒前
温茶月伴夜完成签到 ,获得积分10
26秒前
桃花不用开了完成签到 ,获得积分10
27秒前
欣喜尔安发布了新的文献求助10
30秒前
笨笨芯应助南方周末采纳,获得10
30秒前
30秒前
英俊的铭应助猪江黎学者采纳,获得10
31秒前
basepair完成签到,获得积分10
31秒前
32秒前
32秒前
Psy完成签到,获得积分10
35秒前
111发布了新的文献求助10
35秒前
36秒前
pluto应助laura采纳,获得100
38秒前
39秒前
39秒前
Bin_Liu发布了新的文献求助10
39秒前
wanci应助行7采纳,获得10
40秒前
南方周末完成签到,获得积分10
42秒前
杨震完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780200
求助须知:如何正确求助?哪些是违规求助? 3325511
关于积分的说明 10223282
捐赠科研通 3040677
什么是DOI,文献DOI怎么找? 1668962
邀请新用户注册赠送积分活动 798897
科研通“疑难数据库(出版商)”最低求助积分说明 758634