已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A physics-informed deep learning paradigm for car-following models

计算机科学
作者
Zhaobin Mo,Rongye Shi,Xuan Di
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:130: 103240- 被引量:5
标识
DOI:10.1016/j.trc.2021.103240
摘要

Abstract Car-following behavior has been extensively studied using physics-based models, such as Intelligent Driving Model (IDM). These models successfully interpret traffic phenomena observed in the real world but may not fully capture the complex cognitive process of driving. Deep learning models, on the other hand, have demonstrated their power in capturing observed traffic phenomena but require a large amount of driving data to train. This paper aims to develop a family of neural network based car-following models that are informed by physics-based models, which leverage the advantage of both physics-based (being data-efficient and interpretable) and deep learning based (being generalizable) models. We design physics-informed deep learning car-following model (PIDL-CF) architectures encoded with 4 popular physics-based models - the IDM, the Optimal Velocity Model, the Gazis-Herman-Rothery model, and the Full Velocity Difference Model. Acceleration is predicted for 4 traffic regimes: acceleration, deceleration, cruising, and emergency braking. The generalization of PIDL method is further validated using two representative neural network models: the artificial neural networks (ANN) and the long short-term memory (LSTM) model. Two types of PIDL-CF problems are studied, one to predict acceleration only and the other to jointly predict acceleration and discover model parameters. We also demonstrate the superior performance of PIDL with the Next Generation SIMulation (NGSIM) dataset over baselines, especially when the training data is sparse. The results demonstrate the superior performance of neural networks informed by physics over those without.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈补天完成签到 ,获得积分10
1秒前
Parotodus完成签到,获得积分10
1秒前
小绵羊完成签到,获得积分20
2秒前
祁连山的熊猫完成签到 ,获得积分0
2秒前
wqk完成签到,获得积分10
3秒前
知性的雅彤完成签到,获得积分10
3秒前
李家静完成签到 ,获得积分10
3秒前
请问完成签到,获得积分10
4秒前
嗜血啊阳完成签到,获得积分10
4秒前
冰凝完成签到,获得积分10
4秒前
焉识发布了新的文献求助10
4秒前
hq完成签到 ,获得积分10
5秒前
im红牛完成签到 ,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
小小怪完成签到 ,获得积分10
5秒前
shinysparrow应助科研通管家采纳,获得200
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
悄悄完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
a.s完成签到 ,获得积分0
8秒前
yetong完成签到 ,获得积分10
8秒前
sasa发布了新的文献求助20
8秒前
9秒前
请问发布了新的文献求助100
9秒前
13秒前
英俊的铭应助XXHH采纳,获得10
13秒前
焉识完成签到,获得积分20
14秒前
虚掩的门发布了新的文献求助10
14秒前
zc完成签到,获得积分10
17秒前
吉吉完成签到 ,获得积分10
17秒前
今后应助G_Ggo采纳,获得10
19秒前
20秒前
阵痛完成签到 ,获得积分10
24秒前
24秒前
小丸子发布了新的文献求助10
25秒前
im红牛完成签到 ,获得积分10
29秒前
研友_MLJWvn完成签到 ,获得积分10
29秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819744
求助须知:如何正确求助?哪些是违规求助? 3362685
关于积分的说明 10418211
捐赠科研通 3080890
什么是DOI,文献DOI怎么找? 1694889
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768482