化学
钌
卤化
光催化
催化作用
光化学
组合化学
光催化
有机化学
作者
Simon Cerfontaine,Sara A. M. Wehlin,Benjamin Elias,Ludovic Troian‐Gautier
摘要
Higher nuclearity photosensitizers produced dehalogenation yields greater than 90% in the reported [Ru(bpy)3]2+-mediated dehalogenation of 4-bromobenzyl-2-chloro-2-phenylacetate to 4-bromobenzyl-2-phenylacetate with orange light in 7 h, whereas after 72 h yields of 49% were obtained with [Ru(bpy)3]2+. Dinuclear (D1), trinuclear (T1), and quadrinuclear (Q1) ruthenium(II) 2,2'-bipyridine based photosensitizers were synthesized, characterized, and investigated for their photoreactivity. Three main factors were shown to lead to increased yields (i) the red-shifted absorbance of polynuclear photosensitizers, (ii) the more favorable driving force for electron transfer, characterized by more positive E1/2(Ru2+*/+), and (iii) the smaller population of the 3MC state (<0.5% for D1, T1 and Q1 vs 48% for [Ru(bpy)3]2+ at room temperature). Collectively, these results highlight the potential advantages of using polynuclear photosensitizers in phototriggered redox catalysis reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI