Real-Time Decoding of Attentional States Using Closed-Loop EEG Neurofeedback

神经反射 脑电图 心理学 会话(web分析) 生物反馈 注意力控制 认知 任务(项目管理) 听觉反馈 听力学 认知心理学 计算机科学 神经科学 医学 管理 精神科 万维网 经济
作者
Greta Tuckute,Sofie Therese Hansen,Troels W. Kjær,Lars Kai Hansen
出处
期刊:Neural Computation [The MIT Press]
卷期号:33 (4): 967-1004 被引量:13
标识
DOI:10.1162/neco_a_01363
摘要

Sustained attention is a cognitive ability to maintain task focus over extended periods of time (Mackworth, 1948; Chun, Golomb, & Turk-Browne, 2011). In this study, scalp electroencephalography (EEG) signals were processed in real time using a 32 dry-electrode system during a sustained visual attention task. An attention training paradigm was implemented, as designed in DeBettencourt, Cohen, Lee, Norman, and Turk-Browne (2015) in which the composition of a sequence of blended images is updated based on the participant's decoded attentional level to a primed image category. It was hypothesized that a single neurofeedback training session would improve sustained attention abilities. Twenty-two participants were trained on a single neurofeedback session with behavioral pretraining and posttraining sessions within three consecutive days. Half of the participants functioned as controls in a double-blinded design and received sham neurofeedback. During the neurofeedback session, attentional states to primed categories were decoded in real time and used to provide a continuous feedback signal customized to each participant in a closed-loop approach. We report a mean classifier decoding error rate of 34.3% (chance = 50%). Within the neurofeedback group, there was a greater level of task-relevant attentional information decoded in the participant's brain before making a correct behavioral response than before an incorrect response. This effect was not visible in the control group (interaction p=7.23e-4), which strongly indicates that we were able to achieve a meaningful measure of subjective attentional state in real time and control participants' behavior during the neurofeedback session. We do not provide conclusive evidence whether the single neurofeedback session per se provided lasting effects in sustained attention abilities. We developed a portable EEG neurofeedback system capable of decoding attentional states and predicting behavioral choices in the attention task at hand. The neurofeedback code framework is Python based and open source, and it allows users to actively engage in the development of neurofeedback tools for scientific and translational use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
小何发布了新的文献求助10
3秒前
高大豌豆完成签到 ,获得积分10
4秒前
orixero应助云帆采纳,获得10
5秒前
onlyan发布了新的文献求助10
5秒前
今后应助Xxx采纳,获得10
5秒前
CipherSage应助liwanr采纳,获得10
6秒前
华仔应助Feliciti采纳,获得10
6秒前
丘比特应助YANG采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
camellia发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
Yolo发布了新的文献求助10
13秒前
Ann发布了新的文献求助10
13秒前
14秒前
科目三应助lbc采纳,获得20
14秒前
一一发布了新的文献求助10
14秒前
壮观以松发布了新的文献求助10
14秒前
15秒前
所所应助酷酷亦寒采纳,获得10
15秒前
辛谷方松永旭完成签到 ,获得积分10
15秒前
swzzaf发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
怕黑筝完成签到,获得积分10
17秒前
英俊延恶发布了新的文献求助10
17秒前
17秒前
123123完成签到,获得积分10
18秒前
19秒前
CodeCraft应助SQYue采纳,获得10
19秒前
19秒前
19秒前
Unifrog发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962637
求助须知:如何正确求助?哪些是违规求助? 4222597
关于积分的说明 13151124
捐赠科研通 4006734
什么是DOI,文献DOI怎么找? 2193187
邀请新用户注册赠送积分活动 1206804
关于科研通互助平台的介绍 1119051