Efficient and Effective Regularized Incomplete Multi-view Clustering

聚类分析 计算机科学 核(代数) 相关聚类 约束聚类 趋同(经济学) 人工智能 CURE数据聚类算法 数据挖掘 算法 数学优化 机器学习 数学 经济增长 组合数学 经济
作者
Xinwang Liu,Miaomiao Li,Chang Tang,Jingyuan Xia,Jian Xiong,Li Liu,Marius Kloft,En Zhu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:156
标识
DOI:10.1109/tpami.2020.2974828
摘要

Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated optimization and limitedly improved clustering performance. In this paper, we first propose an Efficient and Effective Incomplete Multi-view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover, we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two three-step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity, and their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms. Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly and consistently outperforming some state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如风完成签到,获得积分10
刚刚
5秒前
可靠面包发布了新的文献求助10
6秒前
罗明明完成签到 ,获得积分10
8秒前
传统的萝发布了新的文献求助10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
10秒前
安紊完成签到,获得积分10
10秒前
田様应助科研通管家采纳,获得10
10秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
开心元霜完成签到 ,获得积分10
11秒前
12秒前
14秒前
虚心的幻巧完成签到,获得积分10
14秒前
星辰大海应助虚心的幻巧采纳,获得10
18秒前
KaK发布了新的文献求助10
20秒前
大个应助YIFEI采纳,获得10
21秒前
zhang2001完成签到,获得积分10
22秒前
无聊的纸飞机完成签到,获得积分10
22秒前
苹果果汁完成签到,获得积分10
23秒前
fsznc完成签到 ,获得积分0
23秒前
25秒前
科研通AI2S应助晓雯采纳,获得10
25秒前
催化剂发布了新的文献求助10
29秒前
小二郎应助可靠面包采纳,获得10
32秒前
wanci应助一北采纳,获得10
32秒前
所所应助KaK采纳,获得10
33秒前
怡然的嫣然完成签到,获得积分10
38秒前
39秒前
39秒前
40秒前
cmd完成签到,获得积分10
40秒前
英俊的铭应助催化剂采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385