m6Acorr: an online tool for the correction and comparison of m 6 A methylation profiles

DNA甲基化 生物导体 表观遗传学 R包 CpG站点 生物
作者
Jianwei Li,Yan Huang,Qinghua Cui,Yuan Zhou
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:21 (1): 31- 被引量:4
标识
DOI:10.1186/s12859-020-3380-6
摘要

The analysis and comparison of RNA m6A methylation profiles have become increasingly important for understanding the post-transcriptional regulations of gene expression. However, current m6A profiles in public databases are not readily intercomparable, where heterogeneous profiles from the same experimental report but different cell types showed unwanted high correlations. Several normalizing or correcting methods were tested to remove such laboratory bias. And m6Acorr, an effective pipeline for correcting m6A profiles, was presented on the basis of quantile normalization and empirical Bayes batch regression method. m6Acorr could efficiently correct laboratory bias in the simulated dataset and real m6A profiles in public databases. The preservation of biological signals was examined after correction, and m6Acorr was found to better preserve differential methylation signals, m6A regulated targets, and m6A-related biological features than alternative methods. Finally, the m6Acorr server was established. This server could eliminate the potential laboratory bias in m6A methylation profiles and perform profile–profile comparisons and functional analysis of hyper- (hypo-) methylated genes based on corrected methylation profiles. m6Acorr was established to correct the existing laboratory bias in RNA m6A methylation profiles and perform profile comparisons on the corrected datasets. The m6Acorr server is available at http://www.rnanut.net/m6Acorr. A stand-alone version with the correction function is also available in GitHub at https://github.com/emersON106/m6Acorr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SKinner发布了新的文献求助10
刚刚
刚刚
CC发布了新的文献求助10
1秒前
宋杓完成签到,获得积分10
2秒前
油炸小麻花完成签到,获得积分10
2秒前
科研通AI6应助大陆采纳,获得10
3秒前
ZhouZhou发布了新的文献求助10
3秒前
4秒前
cccc发布了新的文献求助10
4秒前
迟暮完成签到 ,获得积分10
5秒前
逍遥子0923应助nino采纳,获得10
5秒前
啊炜发布了新的文献求助10
6秒前
Nobody完成签到,获得积分10
6秒前
科研通AI2S应助hydargyrum采纳,获得10
6秒前
6秒前
7秒前
大个应助喵喵采纳,获得10
7秒前
HHY完成签到,获得积分10
7秒前
8秒前
LZT发布了新的文献求助10
8秒前
123完成签到,获得积分20
8秒前
刘五州完成签到,获得积分20
8秒前
SUN发布了新的文献求助10
9秒前
北北北发布了新的文献求助10
9秒前
SciGPT应助yuhan采纳,获得10
10秒前
Owen应助ZhouZhou采纳,获得10
11秒前
11秒前
踏实雪一发布了新的文献求助10
11秒前
11秒前
11秒前
CC完成签到,获得积分10
12秒前
刘五州发布了新的文献求助30
12秒前
Shu舒发布了新的文献求助10
13秒前
初晴发布了新的文献求助10
14秒前
嘻嘻嘻完成签到,获得积分10
14秒前
华仔应助nyota采纳,获得30
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
木头人呐完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461250
求助须知:如何正确求助?哪些是违规求助? 4566246
关于积分的说明 14304179
捐赠科研通 4491964
什么是DOI,文献DOI怎么找? 2460605
邀请新用户注册赠送积分活动 1449891
关于科研通互助平台的介绍 1425587