Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm

估计 噪音(视频) 计算机科学 算法 人工智能 计算机视觉 图像(数学) 工程类 系统工程
作者
Chang Cai,Ali Hashemi,Mithun Diwakar,Stefan Haufe,Kensuke Sekihara,Srikantan S. Nagarajan
出处
期刊:NeuroImage [Elsevier BV]
卷期号:225: 117411-117411 被引量:31
标识
DOI:10.1016/j.neuroimage.2020.117411
摘要

Robust estimation of the number, location, and activity of multiple correlated brain sources has long been a challenging task in electromagnetic brain imaging from M/EEG data, one that is significantly impacted by interference from spontaneous brain activity, sensor noise, and other sources of artifacts. Recently, we introduced the Champagne algorithm, a novel Bayesian inference algorithm that has shown tremendous success in M/EEG source reconstruction. Inherent to Champagne and most other related Bayesian reconstruction algorithms is the assumption that the noise covariance in sensor data can be estimated from "baseline" or "control" measurements. However, in many scenarios, such baseline data is not available, or is unreliable, and it is unclear how best to estimate the noise covariance. In this technical note, we propose several robust methods to estimate the contributions to sensors from noise arising from outside the brain without the need for additional baseline measurements. The incorporation of these methods for diagonal noise covariance estimation improves the robust reconstruction of complex brain source activity under high levels of noise and interference, while maintaining the performance features of Champagne. Specifically, we show that the resulting algorithm, Champagne with noise learning, is quite robust to initialization and is computationally efficient. In simulations, performance of the proposed noise learning algorithm is consistently superior to Champagne without noise learning. We also demonstrate that, even without the use of any baseline data, Champagne with noise learning is able to reconstruct complex brain activity with just a few trials or even a single trial, demonstrating significant improvements in source reconstruction for electromagnetic brain imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助yii采纳,获得10
刚刚
jenningseastera应助无情孤菱采纳,获得10
刚刚
ding应助CH采纳,获得10
1秒前
3秒前
4秒前
hky发布了新的文献求助10
4秒前
4秒前
852应助cjjwei采纳,获得10
4秒前
123完成签到,获得积分10
6秒前
不解释发布了新的文献求助10
9秒前
1111111111111发布了新的文献求助10
10秒前
11秒前
happy完成签到 ,获得积分10
11秒前
12秒前
14秒前
kanoz完成签到 ,获得积分10
15秒前
李佳乐完成签到,获得积分10
15秒前
16秒前
16秒前
陈龙平发布了新的文献求助10
17秒前
cdqiu完成签到,获得积分10
17秒前
深情安青应助那你采纳,获得30
18秒前
18秒前
cjjwei发布了新的文献求助10
18秒前
CH发布了新的文献求助10
18秒前
19秒前
20秒前
刘八一发布了新的文献求助10
22秒前
23秒前
敏感赛君发布了新的文献求助10
24秒前
24秒前
小小杜发布了新的文献求助10
24秒前
Wilddeer完成签到 ,获得积分10
24秒前
Freya发布了新的文献求助20
25秒前
王若凡完成签到,获得积分20
26秒前
张张张完成签到,获得积分10
26秒前
lu关闭了lu文献求助
26秒前
LXhong发布了新的文献求助10
26秒前
宇宙粉红闪电完成签到,获得积分10
27秒前
复杂雨双发布了新的文献求助30
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800701
求助须知:如何正确求助?哪些是违规求助? 3346044
关于积分的说明 10328318
捐赠科研通 3062548
什么是DOI,文献DOI怎么找? 1681011
邀请新用户注册赠送积分活动 807353
科研通“疑难数据库(出版商)”最低求助积分说明 763642