基因组
折叠(DSP实现)
背景(考古学)
计算生物学
序列(生物学)
人工神经网络
领域(数学分析)
DNA测序
比例(比率)
计算机科学
DNA
生物
人工智能
遗传学
基因
物理
量子力学
电气工程
工程类
数学分析
古生物学
数学
作者
Ron Schweßinger,Matthew Gosden,Damien J. Downes,Richard C. Brown,A. Marieke Oudelaar,Jelena Telenius,Yee Whye Teh,Gerton Lunter,Jim R. Hughes
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2020-10-12
卷期号:17 (11): 1118-1124
被引量:170
标识
DOI:10.1038/s41592-020-0960-3
摘要
Predicting the impact of noncoding genetic variation requires interpreting it in the context of three-dimensional genome architecture. We have developed deepC, a transfer-learning-based deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries at high resolution, learns the sequence determinants of genome folding and predicts the impact of both large-scale structural and single base-pair variations.
科研通智能强力驱动
Strongly Powered by AbleSci AI